Denitrification in alluvial wetlands in an urban landscape.

J Environ Qual

Marine Estuarine and Environmental Science Program, Univ. of Maryland Baltimore County, 1000 Hilltop Cir., Baltimore, MD 21250, USA.

Published: May 2011

Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2010.0335DOI Listing

Publication Analysis

Top Keywords

denitrification rates
16
+/- microg
12
microg soil-1
12
soil-1 d-1
12
denitrification
8
wetlands
8
urban watersheds
8
urban wetlands
8
forested reference
8
reference wetlands
8

Similar Publications

Nitrogen heterocyclic antibiotics (NHAs) pollution poses a significant threat to aquatic ecosystems. Ozonation (O) pretreatment is beneficial for the removal of total nitrogen (TN) in antibiotics by facilitating subsequent biological treatment. However, nitrogen transformation and bacterial community responses when treating NHAs by O-coupled biological processes remain unclear.

View Article and Find Full Text PDF

Freshwater Salinization Mitigated NO Emissions in Submerged Plant-Covered Systems: Insights from Attached Biofilms.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Submerged plants (SMPs) play a critical role in improving water quality and reducing NO greenhouse gas emissions. However, freshwater salinization represents a major environmental challenge in aquatic systems. To investigate the impact of salinization on NO emissions, this study conducted indoor mesocosm experiments simulating SMP and nonsubmerged plant (Non_SMP) areas in freshwater lakes.

View Article and Find Full Text PDF

Quantification of denitrification rate in shallow groundwater using the single-well, push-pull test technique.

J Contam Hydrol

January 2025

Environmental Science, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.

Denitrification has been identified as a significant nitrate attenuation process in groundwater systems. Hence, accurate quantification of denitrification rates is consequently important for the better understanding and assessment of nitrate contamination of groundwater systems. There are, however, few studies that have investigated quantification of shallow groundwater denitrification rates using different analytical approaches or assuming different kinetic reaction models.

View Article and Find Full Text PDF

Research on low dissolved oxygen (DO) enhanced biological phosphorus removal (EBPR) at full-scale remains limited, a knowledge gap this study aims to fill by investigating EBPR performance and microbial community shifts at a Water Resource Recovery Facility (WRRF) transitioning to low DO conditions. Average DO concentrations decreased from 2.62 mg O/L in 2019 to 0.

View Article and Find Full Text PDF

Effective denitrification from landfill leachate using magnetic PVA/CMC/DE carrier immobilized microorganisms.

Waste Manag

January 2025

Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China.

Ammonia nitrogen (NH-N) discharge has caused eutrophication of water bodies and harm to humans and organisms. In this work, polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), diatomite (DE), and FeO were used to prepare magnetic immobilized carriers by encapsulating microorganisms for the treatment of NH-N wastewater. The response surface methodology was used to explore the optimal ratio of the immobilized carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!