Shiny black, air-insensitive crystals of tellurium-rich one-dimensional coordination polymers were synthesized by melting a mixture of the elements with TeCl(4). The compounds [Ru(Te(9))](InCl(4))(2) and [Ru(Te(8))]Cl(2) crystallize in the monoclinic space group type C2/c, whereas [Rh(Te(6))]Cl(3) adopts the trigonal space group type R ̅3c. In the crystal structures, linear, positively charged [M(m+) (Te(n)(±0))] (M=Ru, m=2; Rh, m=3) chains run parallel to the c axes. Each of the uncharged Te(n) molecules (n=6, 8, 9) coordinates two transition-metal atoms as a bridging bis-tridentate ligand. Because the coordinating tellurium atoms act as electron-pair donors, the 18-electron rule is fulfilled for the octahedrally coordinated transition-metal cations. Based on DFT calculations, the quantum theory of atoms in molecules (QTAIM) and the electron localizability indicator (ELI) provide insight into the principles of the polar donor bonding in these complexes. Comparison with optimized ring geometries reveals substantial tension in the coordinating tellurium molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201003558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!