The Notch receptor pathway provides a paradigm for juxtacrine signaling pathways and controls stem cell function, developmental cell fate decisions, and cellular differentiation. The Notch pathway is constitutively activated in human cancers by chromosomal rearrangements, activating point mutations, or altered expression patterns. Therefore, the Notch pathway is the subject of chemotherapeutic intervention in a variety of human cancers. Notch receptor activation results in the gamma-secretase dependent proteolytic cleavage of the receptor to liberate the Notch intracellular domain that acts to mediate co-activator recruitment to the DNA binding transcription factor, CSL (CBF-1/RBP-Jκ, Su(H), Lag-1). Therapeutic targeting of the Notch pathway by gamma-secretase inhibitors prevents NICD production and regulates CSL-dependent transcriptional activity. To interrogate the loss of CSL activity in breast and prostate cancer cells, we used lentiviral-based shRNA knockdown of CSL. Knockdown of CSL expression was assessed by decreased DNA binding activity and resulted in decreased cell proliferation. In contrast, gamma-secretase inhibitor (GSI) treatment of these prostate and breast cancer cell lines resulted in minimal growth effects. PCR profiling of Notch pathway genes identified expression changes in few genes (Delta-like-1, Deltex-1, LMO2, and SH2D1A) after CSL knockdown. Consistent with differential effects of GSI on cell survival, GSI treatment failed to recapitulate the gene expression changes observed after CSL knockdown. Thus, CSL inhibition may provide a more effective mechanism to inhibit Notch-pathway dependent cancer cell proliferation as compared to GSI treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.23157DOI Listing

Publication Analysis

Top Keywords

notch pathway
16
cell proliferation
12
knockdown csl
12
csl knockdown
12
gsi treatment
12
csl activity
8
prostate breast
8
breast cancer
8
cancer cells
8
notch receptor
8

Similar Publications

Oral Cancer Stem Cells: A Comprehensive Review of Key Drivers of Treatment Resistance and Tumor Recurrence.

Eur J Pharmacol

January 2025

Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India. Electronic address:

Oral squamous cell carcinoma (OSCC) remains a major cause of morbidity and mortality worldwide with high recurrence rates and resistance to conventional therapies. Recent studies have highlighted the pivotal role of oral cancer stem cells (OCSCs) in driving treatment resistance and tumor recurrence. OCSCs possess unique properties, including self-renewal, differentiation potential, and resistance to chemotherapy and radiotherapy, which contribute to their ability to survive treatment and initiate tumor relapse.

View Article and Find Full Text PDF

Role of COL5A1 in lung squamous cell Carcinoma: Prognostic Implications and therapeutic potential.

Int Immunopharmacol

January 2025

Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China. Electronic address:

Background: Lung squamous cell carcinoma (LUSC) is a significant health concern, characterized by a lack of specific therapies and limited treatment options for patients in advanced stages. This study aims to identify key molecules of prognostic importance in LUSC and provide an experimental foundation for their potential therapeutic applications.

Methods: Immune-related transcriptome expression analysis was performed on LUSC samples using the NanoString digital gene analysis system to develop a prognostic transcriptomic signature.

View Article and Find Full Text PDF

APOM Modulates the Glycolysis Process in Liver Cancer Cells by Controlling the Expression and Activity of HK2 via the Notch Pathway.

Biochem Genet

January 2025

Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China.

The metabolic pathway of aerobic glycolysis in tumor cells has garnered significant attention in tumor research because of its high activation in cancer cells. Previous research conducted by our team has demonstrated that Apolipoprotein M (APOM) exhibits potential as a factor against liver cancer. However, further investigations are needed to elucidate the precise approach and mechanism that are involved in this process.

View Article and Find Full Text PDF

To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!