Pelvic organ prolapse (POP) is a common condition affecting almost half of women over the age of 50. The molecular and cellular mechanisms underlying this condition, however, remain poorly understood. Here we have reported that fibulin-5, an integrin-binding matricellular protein that is essential for elastic fiber assembly, regulated the activity of MMP-9 to maintain integrity of the vaginal wall and prevented development of POP. In murine vaginal stromal cells, fibulin-5 inhibited the β1 integrin-dependent, fibronectin-mediated upregulation of MMP-9. Mice in which the integrin-binding motif was mutated to an integrin-disrupting motif (Fbln5RGE/RGE) exhibited upregulation of MMP-9 in vaginal tissues. In contrast to fibulin-5 knockouts (Fbln5-/-), Fbln5RGE/RGE mice were able to form intact elastic fibers and did not exhibit POP. However, treatment of mice with β-aminopropionitrile (BAPN), an inhibitor of matrix cross-linking enzymes, induced subclinical POP. Conversely, deletion of Mmp9 in Fbln5-/- mice significantly attenuated POP by increasing elastic fiber density and improving collagen fibrils. Vaginal tissue samples from pre- and postmenopausal women with POP also displayed significantly increased levels of MMP-9. These results suggest that POP is an acquired disorder of extracellular matrix and that therapies targeting matrix proteases may be successful for preventing or ameliorating POP in women.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083772 | PMC |
http://dx.doi.org/10.1172/JCI45636 | DOI Listing |
Langmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFBackground: There is continuous demand for safe, effective cosmetic ingredients to treat the signs of aging skin, including fine lines, wrinkles, brown spots, discoloration, laxity, and sagging. While there are a plethora of cosmeceutical peptides, few combine anti-aging and anti-inflammatory benefits with small size.
Methods: Preclinical and clinical studies evaluated the anti-inflammatory properties, anti-aging benefits, and tolerability of acetyl dipeptide-31 amide (AP31), a novel, small, anti-aging micropeptide, to understand its impact as a multifaceted, cosmetic, anti-aging, and anti-inflammaging ingredient.
Background: Injectable biostimulator treatments stimulate endogenous collagen in aging skin, but whether they act through similar pathways is unknown. This study evaluates two biostimulatory agents' effects on genes, expressed proteins, and respective pathways as potential aging biomarkers and treatment outcomes.
Methods: This 13-week, randomized, single-center, comparative study compared volume change and gene expression stimulated by poly-L-lactic acid (PLLA-SCATM) and calcium hydroxylapatite (CaHA-R) via punch biopsy in the nasolabial fold (NLF).
J Drugs Dermatol
January 2025
Background: Exosomes are small extracellular vesicles (30-150 nm in size) that play a critical role in cellular communication, transporting proteins, lipids, and nucleic acids between cells. This literature review focuses on evaluating the potential benefits and limitations of exosomes in enhancing skin health and aesthetics through indications such as skin rejuvenation, hair restoration, and pigmentation disorders.
Methods: A thorough literature search was conducted on PubMed using specific MeSH, including "exosomes," "aesthetics," "cosmetic dermatology," "skin rejuvenation," "hair growth," and "wrinkle reduction.
Hepatol Commun
November 2024
Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!