In this study, we characterized the chemical modifications in the monoclonal antibody (IgG(2)) aggregates generated under various conditions, including mechanical, chemical, and thermal stress treatment, to provide insight into the mechanism of protein aggregation and the types of aggregate produced by the different stresses. In a separate study, additional biophysical characterization was performed to arrange these aggregates into a classification system (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118-25133). Here, we report that different aggregates possessed different types and levels of chemical modification. For chemically treated samples, metal-catalyzed oxidation using copper showed site-specific oxidation of Met(246), His(304), and His(427) in the Fc portion of the antibody, which might be attributed to a putative copper-binding site. For the hydrogen peroxide-treated sample, in contrast, four solvent-exposed Met residues in the Fc portion were completely oxidized. Met and/or Trp oxidation was observed in the mechanically stressed samples, which is in agreement with the proposed model of protein interaction at the air-liquid interface. Heat treatment resulted in significant deamidation but almost no oxidation, which is consistent with thermally induced aggregates being generated by a different pathway, primarily by perturbing conformational stability. These results demonstrate that chemical modifications are present in protein aggregates; furthermore, the type, locations, and severity of the modifications depend on the specific conditions that generated the aggregates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137086 | PMC |
http://dx.doi.org/10.1074/jbc.M110.160440 | DOI Listing |
Int J Biol Macromol
December 2024
School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:
Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
Stable and low-cost field-effect transistor (FET)-based biosensors are vital for the on-site detection of toxic pollutants in environmental monitoring applications. In this study, a tunable aptamer-MXene sensing interface was constructed to develop renewable FET biosensors. This was achieved through the reversible disulfide bond (-S-S-) reaction between the SH-TiCT film and thiolated aptamer.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Acad Sci, Šlechtitelů 31, Olomouc 77900, Czech Republic.
Cytosine (DNA) methylation plays important roles in silencing transposable elements, plant development, genomic imprinting, stress responses, and maintenance of genome stability. To better understand the functions of this epigenetic modification, several tools have been developed to manipulate DNA methylation levels. These include mutants of DNA methylation writers and readers, targeted manipulation of locus-specific methylation, and the use of chemical inhibitors.
View Article and Find Full Text PDFLangmuir
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!