The purpose of this study was to investigate and compare the feasibility of rat sodium iodide symporter (rNIS) and human sodium iodide symporter (hNIS) as reporter genes for noninvasive monitoring of rat bone marrow mesenchymal stem cells (rBMSCs) transplanted into infarcted rat myocardium. rBMSCs were isolated from rat bone marrow. Adenovirus (Ad) was reconstructed to contain rNIS-enhanced green fluorescent protein (eGFP) or hNIS-eGFP. The transfection efficiency of Ad/eGFP/rNIS and Ad/eGFP/hNIS to rBMSCs was measured by real-time polymerase chain reaction, flow cytometry, Western blot, and immunofluorescence staining. The transfected rBMSCs were transplanted into infarcted rat myocardium followed by a single-photon emission computed tomography (SPECT) study with (99m)Tc-pertechnetate as the radiotracer and by autoradiography. The isolated rBMSCs were CD29, CD44, and CD90 positive and CD34, CD45, and CD11b negative. The expression of rNIS and hNIS in the transfected rBMSCs at both gene and protein levels was obviously higher than that without transfection. The myocardium of rats transplanted with transfected rBMSCs could be visualized by SPECT owing to the accumulation of (99m)Tc-pertechnetate in rBMSCs mediated by exogenous NIS genes. The accumulation of (99m)Tc-pertechnetate in myocardium mediated by rNIS was higher than that by hNIS, which was also confirmed by autoradiography. Both rNIS and hNIS are useful reporter genes to monitor BMSCs transplanted into infarcted myocardium in vivo with rNIS being superior to hNIS as the reporter gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2310/7290.2010.00051 | DOI Listing |
Eur J Nucl Med Mol Imaging
December 2024
Turku PET Centre, Turku University Hospital, Turku, Finland.
Purpose: This study aimed to evaluate a novel technique for cell tracking by visualising the activity of the human sodium/iodide symporter (hNIS) after transplantation of hNIS-expressing multilayered cell sheets in a rat model of chronic myocardial infarction.
Methods: Triple-layered cell sheets were generated from mouse embryonic fibroblasts (MEFs) derived from mice overexpressing hNIS (hNIS-Tg). Myocardial infarction was induced by permanent ligation of the left anterior descending coronary artery in F344 athymic rats, and a triple-layered MEFs sheets were transplanted to the infarcted area two weeks after surgery.
Methods Mol Biol
February 2024
Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
In vitro studies using cell culture, including three-dimensional cultures without the involvement of tumor vessels, have limitations in simulating complex intratumoral hypoxic conditions in live subjects. To generate experimental hypoxic conditions closer to those observed in humans in clinical settings, in vivo studies are necessary. In addition, visible light generated via bioluminescence and fluorescence is generally unsuitable for in vivo experiments because of low tissue penetration.
View Article and Find Full Text PDFMol Cancer Ther
June 2023
Department of Surgery, City of Hope National Medical Center, Duarte, California.
Oncolytic viruses (OV) are live viruses that can selectively replicate in cancer cells. We have engineered an OV (CF33) to make it cancer-selective through the deletion of its J2R (thymidine kinase) gene. In addition, this virus has been armed with a reporter gene, human sodium iodide symporter (hNIS), to facilitate noninvasive imaging of tumors using PET.
View Article and Find Full Text PDFMol Cancer Ther
May 2023
City Of Hope Comprehensive Cancer Center, Duarte, CA, United States.
Oncolytic viruses (OVs) are live viruses that can selectively replicate in cancer cells. We have engineered an OV (CF33) to make it cancer-selective through the deletion of its J2R (thymidine kinase) gene. Additionally, this virus has been armed with a reporter gene, human sodium iodide symporter (hNIS), to facilitate non-invasive imaging of tumors using positron emission tomography (PET).
View Article and Find Full Text PDFInt J Mol Sci
January 2022
Instituto Aragonés de Ciencias de la Salud/IIS Aragón, 50009 Zaragoza, Spain.
Due to their ease of isolation and their properties, mesenchymal stem cells (MSCs) have been widely investigated. MSCs have been proved capable of migration towards areas of inflammation, including tumors. Therefore, they have been suggested as vectors to carry therapies, specifically to neoplasias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!