Although epidermal growth factor (EGF) receptor (ErbB1) is implicated in Parkinson's disease and schizophrenia, the neurotrophic action of ErbB1 ligands on nigral dopaminergic neurons remains controversial. Here, we ascertained colocalization of ErbB1 and tyrosine hydroxylase (TH) immunoreactivity and then characterized the neurotrophic effects of ErbB1 ligands on this cell population. In mesencephalic culture, EGF and glial-derived neurotrophic factor (GDNF) similarly promoted survival and neurite elongation of dopaminergic neurons and dopamine uptake. The EGF-promoted dopamine uptake was not inhibited by GDNF-neutralizing antibody or TrkB-Fc, whereas EGF-neutralizing antibody fully blocked the neurotrophic activity of the conditioned medium that was prepared from EGF-stimulated mesencephalic cultures. The neurotrophic action of EGF was abolished by ErbB1 inhibitors and genetic disruption of erbB1 in culture. In vivo administration of ErbB1 inhibitors to rat neonates diminished TH and dopamine transporter (DAT) levels in the striatum and globus pallidus but not in the frontal cortex. In parallel, there was a reduction in the density of dopaminergic varicosities exhibiting intense TH immunoreactivity. In agreement, postnatal erbB1-deficient mice exhibited similar decreases in TH levels. Although neurotrophic supports to dopaminergic neurons are redundant, these results confirm that ErbB1 ligands contribute to the phenotypic and functional development of nigral dopaminergic neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2011.07287.x | DOI Listing |
Adv Biol (Weinh)
March 2025
Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany.
Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease.
View Article and Find Full Text PDFeNeuro
March 2025
Department of Biological Sciences, Wayne State University, Detroit, MI 48202.
Zebrafish have gained prominence as a model organism in neuroscience over the past several decades, generating key insight into the development and functioning of the vertebrate brain. However, techniques for whole brain mapping in adult stage zebrafish are lacking. Here, we describe a pipeline built using open-source tools for whole-brain activity mapping in adult zebrafish.
View Article and Find Full Text PDFSheng Li Xue Bao
February 2025
Key Laboratory for Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
Currently, the incidence of Parkinson's disease (PD) is on the rise. More and more evidences suggest that mitochondrial dysfunction plays a crucial role in the etiology of PD, and dysfunction of mitochondrial complex I (MCI) is one of the most critical factors leading to mitochondrial dysfunction. On one hand, MCI dysfunction stimulates dopaminergic neurons to produce reactive oxygen species (ROS).
View Article and Find Full Text PDFSheng Li Xue Bao
February 2025
Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1 mice. The primary microglia cells of wild-type and CD200R1 mice were cultured and treated with bacterial lipopolysaccharide (LPS).
View Article and Find Full Text PDFCell Commun Signal
March 2025
Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.
Parkinson's disease (PD) is a progressive neurodegenerative disorder primarily driven by the degeneration of dopaminergic neurons, with limited therapeutic interventions currently available. Among the critical factors in PD pathogenesis, DJ-1, a multifunctional protein, has emerged as a key neuroprotective agent against oxidative stress-a major contributor to the disease. Recent research has emphasized the pivotal role of DJ-1 dimerization in enhancing its neuroprotective capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!