The results of a theoretical investigation of the low-velocity stopping power of ions in a magnetized collisional and classical plasma are reported. The stopping power for an ion is calculated through the linear-response (LR) theory. The collisions, which lead to a damping of the excitations in the plasma, are taken into account through a number-conserving relaxation time approximation in the LR function. In order to highlight the effects of collisions and magnetic field, we present a comparison of our analytical and numerical results obtained for nonzero damping or magnetic field with those for vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of the major objectives of this paper is to compare and to contrast our theoretical results with those obtained through a diffusion coefficient formulation based on the Dufty-Berkovsky relation evaluated for a magnetized one-component plasma modeled with target ions and electrons.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.83.036403DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
classical plasma
8
stopping power
8
damping magnetic
8
number-conserving linear-response
4
linear-response study
4
study low-velocity
4
low-velocity ion
4
ion stopping
4
stopping collisional
4

Similar Publications

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

The sharing of multimodal magnetic resonance imaging (MRI) data is of utmost importance in the field, as it enables a deeper understanding of facial nerve-related pathologies. However, there is a significant lack of multi-modal neuroimaging databases specifically focused on these conditions, which hampers our comprehensive knowledge of the neural foundations of facial paralysis. To address this critical gap and propel advancements in this area, we have released the Multimodal Neuroimaging Dataset of Meige Syndrome, Facial Paralysis, and Healthy Controls (MND-MFHC).

View Article and Find Full Text PDF

Understanding the ligand field interactions in lanthanide-containing magnetic molecular complexes is of paramount importance for understanding their magnetic properties, and simple models for rationalizing their effects are much desired. In this work, the equivalence between electrostatic models, which derive their results from calculating the electrostatic interaction energy of the charge density of the 4f electrons in an electrostatic potential representing the ligands, and the common quantum mechanical effective spin Hamiltonian in the space of the ground multiplet is formulated in detail. This enables the construction of an electrostatic potential for any given ligand field Hamiltonian and discusses the effects of the ligand field interactions in terms of an interaction of a generalized 4f charge density with the electrostatic potential.

View Article and Find Full Text PDF

Monitoring technology for Cr(VI) adsorption and reduction by NMR spectroscopy.

Chem Commun (Camb)

January 2025

Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China.

This study employs a low-field NMR (LF-NMR) method to investigate Cr(VI) adsorption and reduction in solid-liquid systems, focusing on three cellulose-based amine adsorbents. NMR revealed the effects of molecular structure on adsorption and reduction processes, providing insights into adsorbent design and mass transfer advantages for high-performance Cr(VI) adsorbents.

View Article and Find Full Text PDF

Heart remodelling affects ECG in rat DOCA/salt model.

Physiol Res

December 2024

Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!