Ion and neutral parameters are determined in the high electron density, magnetized, hydrogen plasma beam of an ITER divertor relevant plasma via measurements of the n=2 excited neutrals. Ion rotation velocity (up to 7 km/s) and temperature (2-3 eV~T_{e}) are obtained from analysis of Hα spectra measured close to the plasma source. The methodology for neutral density determination is explained whereby measurements in the linear plasma beam of Pilot-PSI are compared to modeling. Ground-state atomic densities are obtained via the production rate of n=2 and the optical thickness of the Lyman-α transition (escape factor ~0.6) and yield an ionization degree >85% and dissociation degree in the residual gas of ~4%. A 30% proportion of molecules with a rovibrational excitation of more than 2 eV is deduced from the production rate of n=2 atoms. This proportion increases by more than a factor of 4 for a doubling of the electron density in the transition to ITER divertor relevant electron densities, probably because of a large increase in the production and confinement of ground-state neutrals. Measurements are made using laser-induced fluorescence (LIF) and absorption, the suitability of which are evaluated as diagnostics for this plasma regime. Absorption is found to have a much better sensitivity than LIF, mainly owing to competition with background emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.83.036402 | DOI Listing |
J Comp Neurol
January 2025
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Automation and Robotics, CSIC-Universidad Politécnica de Madrid, Arganda del Rey, Madrid, 28500, Spain.
Aluminium and its alloys, especially Al6061, have gathered significant interest among researchers due to its less density, great durability, and high strength. Due to their lightweight properties, the precise machining of these alloys can become expensive through conventional machining operations for intricate products. Therefore, non-traditional machining such as electric discharge machining (EDM) can potentially be opted for the cutting of Al6061.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, K. N. Toosi University of Technology, Tehran 19697, Iran.
One of the successful techniques developed for the inhibition of metal corrosion is the utilization of phytochemicals from plant extracts as corrosion inhibitors. Theoretical studies are utilized to predict how organic components behave on metal surfaces and can pave the way for the development and synthesis of innovative, efficient corrosion inhibitors. However, atomic-level insights into the inhibition mechanisms of these green components are still needed.
View Article and Find Full Text PDFIUCrJ
March 2025
Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
A detailed study of the X...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!