Electrokinetic secondary-flow behavior in a curved microchannel under dissimilar surface conditions.

Phys Rev E Stat Nonlin Soft Matter Phys

Complex Fluids Research Laboratory, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 136-791, Republic of Korea.

Published: March 2011

The curved channel appears to be indispensable for the lab-on-chips systems because it provides a convenient scheme for increasing the channel length per unit chip area in the direction of net flow. A secondary Dean flow in curved rectangular microchannels is examined by applying the finite-volume scheme with a semi-implicit method for pressure-linked equations (SIMPLE) algorithm for the pressure-driven electrokinetic transport. This framework is based on the theoretical model coupled with the full Poisson-Boltzmann, Navier-Stokes, and the Nernst-Planck principles of net charge conservation [Yun et al., Phys. Fluids 22, 052004 (2010)]. The effect of a dissimilar wall condition on the secondary flow at the turn is explored by considering different configurations of channel wall having complementary aspect ratios (i.e., ratio of the channel height to the channel width, H/W = 0.25 and 4.0) with combinations of hydrophilic glass and hydrophobic polydimethylsiloxane surfaces. Simulation results exhibit that, contrary to the case of general narrow-bore channels, the streamwise axial velocity tends to shift toward the inner wall caused by a stronger effect of the spanwise pressure gradient, according to a sufficiently low Dean number. The increasing rate of this shift with increasing curvature ratio is more significant in the shallow (or low-aspect-ratio) channel, due to the effect of greater distance traveled by the fluid along the outer wall. The curvature introduces the presence of pairs of counter-rotating vortices perpendicular to the flow direction. Comparing between shallow and deep (or high-aspect-ratio) channels allows us to identify that the patterns of axial velocity and vorticity are altered by the heterogeneity effect of surfaces occupying a large area. The total magnitude of vorticity at the cross section of the channel increases with increasing slip length, due to the contribution of enhanced axial velocity driven by the slip, while there is no fluid-slip dependency for the slip length of less than about 50 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.83.036312DOI Listing

Publication Analysis

Top Keywords

axial velocity
12
slip length
8
channel
7
electrokinetic secondary-flow
4
secondary-flow behavior
4
behavior curved
4
curved microchannel
4
microchannel dissimilar
4
dissimilar surface
4
surface conditions
4

Similar Publications

This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.

View Article and Find Full Text PDF

Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging.

Fluids Barriers CNS

January 2025

Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.

Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.

View Article and Find Full Text PDF

The cavitation water jet cleaning and coating removal technique represents an innovative sustainable method for cleaning and removing coatings, with the nozzle serving as a crucial component of this technology. Developing an artificially submerged nozzle with a reliable structure and excellent cavitation performance is essential for enhancing cavitation water jets' cleaning and coating removal efficacy in an atmosphere environment (non-submerged state). This study is based on the shear flow cavitation mechanism of an angular nozzle, the resonance principle of an organ pipe, and the jet pump principle.

View Article and Find Full Text PDF

High-resolution hemodynamic estimation from ultrafast ultrasound image velocimetry using a physics-informed neural network.

Phys Med Biol

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China.

Estimating the high-resolution (HR) blood flow velocity and pressure fields for the diagnosis and treatment of vascular diseases remains challenging.. In this study, a physics-informed neural network (PINN) with a refined mapping capability was combined with ultrafast ultrasound image velocimetry (u-UIV) to predict HR hemodynamic parameters.

View Article and Find Full Text PDF

In order to study the movement characteristics of coal particles in the coal loading process of spiral drums, the spiral drum of a certain type of shearer was taken as the research object, and the intrinsic parameters of the materials were calibrated through the determination results of coal sample properties, the relevant parameters of coal particle adhesion were determined, and a discrete element model of spiral drum coal loading was established. The distribution of coal particle movement subsequent to the fracture of the coal wall was derived through simulation. By spatially dividing the envelope region of the spiral drum along the radial and axial directions, the number and velocity distribution of coal particles in different envelope regions were obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!