Using analysis of covariance (ANCOVA) with fallible covariates.

Psychol Methods

Department of Mathematical and Statistical Sciences, University of Colorado Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364, USA.

Published: June 2011

Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but use ANCOVA anyway (and, most likely, report misleading results); (b) attempt to employ 1 of several measurement error models with the understanding that no research has examined their relative performance and with the added practical difficulty that several of these models are not available in commonly used statistical software; or (c) not use ANCOVA at all. First, we discuss analytic evidence to explain why using ANCOVA with fallible covariates produces bias and a systematic inflation of Type I error rates that may lead to the incorrect conclusion that treatment effects exist. Second, to provide a solution for this problem, we conduct 2 Monte Carlo studies to compare 4 existing approaches for adjusting treatment effects in the presence of covariate measurement error: errors-in-variables (EIV; Warren, White, & Fuller, 1974), Lord's (1960) method, Raaijmakers and Pieters's (1987) method (R&P), and structural equation modeling methods proposed by Sörbom (1978) and Hayduk (1996). Results show that EIV models are superior in terms of parameter accuracy, statistical power, and keeping Type I error close to the nominal value. Finally, we offer a program written in R that performs all needed computations for implementing EIV models so that ANCOVA can be used to obtain accurate results even when covariates are measured with error.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0023355DOI Listing

Publication Analysis

Top Keywords

analysis covariance
8
covariance ancova
8
ancova fallible
8
fallible covariates
8
measured error
8
measurement error
8
type error
8
treatment effects
8
eiv models
8
ancova
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!