This paper reports the radio frequency (RF) and linearity performance of transistors using high-purity semiconducting carbon nanotubes. High-density, uniform semiconducting nanotube networks are deposited at wafer scale using our APTES-assisted nanotube deposition technique, and RF transistors with channel lengths down to 500 nm are fabricated. We report on transistors exhibiting a cutoff frequency (f(t)) of 5 GHz and with maximum oscillation frequency (f(max)) of 1.5 GHz. Besides the cutoff frequency, the other important figure of merit for the RF transistors is the device linearity. For the first time, we report carbon nanotube RF transistor linearity metrics up to 1 GHz. Without the use of active probes to provide the high impedance termination, the measurement bandwidth is therefore not limited, and the linearity measurements can be conducted at the frequencies where the transistors are intended to be operating. We conclude that semiconducting nanotube-based transistors are potentially promising building blocks for highly linear RF electronics and circuit applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn200919vDOI Listing

Publication Analysis

Top Keywords

radio frequency
8
frequency linearity
8
linearity performance
8
performance transistors
8
transistors high-purity
8
high-purity semiconducting
8
semiconducting carbon
8
carbon nanotubes
8
cutoff frequency
8
transistors
7

Similar Publications

A Zn-doped SbTe flexible thin film with decoupled Seebeck coefficient and electrical conductivity band engineering.

Chem Sci

January 2025

Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China

SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.

View Article and Find Full Text PDF

Terahertz on-chip pathway is crucial for next-generation wireless communication, terahertz integrated circuits, and high-speed chip interconnections, yet its development is impeded by issues like channel crosstalk and disordered scattering. In this study, we propose and experimentally demonstrate a terahertz on-chip topological pathway that exhibits exceptional transmission robustness, unaffected by structural curvature. The pathway is constructed using a subwavelength structure that combines the benefits of topological properties, such as broadband single-mode transmission and linear dispersion, with the field localization effects of periodic metal structures.

View Article and Find Full Text PDF

A three-sectioned, bidirectionally coupled, tunable, optical comb source is presented. The photonic integrated circuit (PIC) consists of a gain section, a slotted mirror section and a Fabry-Perot (FP) section. Optical frequency combs (OFCs) are produced by gain switching the FP section via a high power radio frequency (RF) signal.

View Article and Find Full Text PDF

Beyond 5 G and 6 G, communication systems should be able to deliver high throughput, low latency, high dependability, and high energy efficiency services. The creation of hybrid systems that can meet and largely satisfy these needs is promised by the merging of systems based on optical communication and radio frequency (RF). Smart devices may work together to cooperatively train Machine Learning (ML) models in a distributed fashion using Federated Learning (FL), all without disclosing personal information to a central server.

View Article and Find Full Text PDF

Broadband minimalist wireless base stations without energy-consuming electrical power amplifiers are the rosy scenario of the next-generation wireless communication systems. High-power radio-over-fiber (RoF) links, which are featured by large operation bandwidths, are regarded as the supporting technology for realizing such a vision. Nevertheless, the severe signal-to-noise ratio (SNR) deterioration induced by the second Brillouin scattering in high-power and long-distance RoF links must be first solved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!