Epidemiological studies of exposure to vegetation fire smoke are often limited by the availability of accurate exposure data. This paper describes a systematic framework for retrospectively identifying the cause of air pollution events to facilitate a long, multicenter analysis of the public health effects of vegetation fire smoke pollution in Australia. Pollution events were statistically defined as any day at or above the 95th percentile of the 24-hr average concentration of particulate matter (PM). These were identified for six cities from three distinct ecoclimatic regions of Australia. The dates of each event were then crosschecked against a range of information sources, including online newspaper archives, government and research agency records, satellite imagery, and aerosol optical thickness measures to identify the cause for the excess particulate pollution. Pollution events occurred most frequently during summer for cities in subtropical and arid regions and during winter for cities in temperate regions. A cause for high PM on 67% of days examined in the city of Sydney was found, and 94% of these could be attributed to landscape fire smoke. Results were similar for cities in other subtropical and arid locations. Identification of the cause of pollution events was much lower in colder temperate regions where fire activity is less frequent. Bushfires were the most frequent cause of extreme pollution events in cities located in subtropical and arid regions of Australia. Although identification of pollution episodes was greatly improved by the use of multiple sources of information, satellite imagery was the most useful tool for identifying bushfire smoke pollution events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3155/1047-3289.61.4.390 | DOI Listing |
Data Brief
February 2025
Office of Air and Radiation, US Environmental Protection Agency, 109 TW Alexander Dr, PO Box 12055, RTP, NC 27711, USA.
The Expedited Modeling of Burn Events Results (EMBER) dataset consists of 36-km grid-spacing Community Multiscale Air Quality (CMAQ) photochemical modeling for the summer of 2023. For emissions, these simulations utilized representative monthly and day-of-week anthropogenic emissions from a recent year and preliminary day-specific 2023 fire emissions derived using BlueSky pipeline. The base model run simulated ozone concentrations across the contiguous US during Apr 11-Sep 29, 2023.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Research Centre for Energy, Environment and Technology (CIEMAT), Avda. Complutense, 40, 28040, Madrid, Spain.
As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States.
Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China. Electronic address:
Background: Although the association of short-term ozone and heatwave exposure with cerebrovascular disease has been well documented, it remains largely unknown whether their co-exposure could synergistically trigger ischemic stroke (IS) mortality.
Methods: We performed an individual-level, time-stratified case-crossover analysis utilizing province-wide IS deaths (n =59079) in warm seasons (May-September) during 2016-2019, across Jiangsu, eastern China. Heatwave was defined according to a combination of multiple temperature thresholds (90-97.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!