Removing forest canopy cover restores a reptile assemblage.

Ecol Appl

School of Biological Sciences A08, University of Sydney, NSW 2006 Australia.

Published: January 2011

Humans are rapidly altering natural systems, leading to changes in the distribution and abundance of species. However, so many changes are occurring simultaneously (e.g., climate change, habitat fragmentation) that it is difficult to determine the cause of population fluctuations from correlational studies. We used a manipulative field experiment to determine whether forest canopy cover directly influences reptile assemblages on rock outcrops in southeastern Australia. Our experimental design consisted of three types of rock outcrops: (1) shady sites in which overgrown vegetation was manually removed (n = 25); (2) overgrown controls (n = 30); and (3) sun-exposed controls (n = 20). Following canopy removal, we monitored reptile responses over 30 months. Canopy removal increased reptile species richness, the proportion of shelter sites used by reptiles, and relative abundances of five species that prefer sun-exposed habitats. Our manipulation also decreased the abundances of two shade-tolerant species. Canopy cover thus directly influences this reptile assemblage, with the effects of canopy removal being dependent on each species' habitat preferences (i.e., selection or avoidance of sun-exposed habitat). Our study suggests that increases in canopy cover can cause declines of open-habitat specialists, as previously suggested by correlative studies from a wide range of taxa. Given that reptile colonization of manipulated outcrops occurred rapidly, artificially opening the canopy in ecologically informed ways could help to conserve imperiled species with patchy distributions and low vagility that are threatened by vegetation overgrowth. One such species is Australia's most endangered snake, the broadheaded snake (Hoplocephalus bungaroides).

Download full-text PDF

Source
http://dx.doi.org/10.1890/09-2394.1DOI Listing

Publication Analysis

Top Keywords

canopy cover
16
canopy removal
12
canopy
8
forest canopy
8
reptile assemblage
8
cover directly
8
directly influences
8
influences reptile
8
rock outcrops
8
reptile
6

Similar Publications

: The functional traits of twigs and leaves are closely related to the ability of plants to cope with heterogeneous environments. The analysis of the characteristics of twigs and leaves and leaf thermal dissipation in riparian plants is of great significance for exploring the light energy allocation and ecological adaptation strategies of plant leaves in heterogeneous habitats. However, there are few studies on the correlation between the twig-leaf characteristics of riparian plants and their heat dissipation in light heterogeneous environments.

View Article and Find Full Text PDF

Evaluating Spherical Trees in the Urban Environment in Budapest (Hungary).

Plants (Basel)

January 2025

Department of Landscape Protection and Reclamation, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.

The world's big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental conditions are making it even more difficult for trees to grow and survive.

View Article and Find Full Text PDF

Using predictive models to identify kelp refuges in marine protected areas for management prioritization.

Ecol Appl

January 2025

Parks Victoria, Marine and Coastal Science and Programs, Melbourne, Victoria, Australia.

Kelp forests serve as the foundation for shallow marine ecosystems in many temperate areas of the world but are under threat from various stressors, including climate change. To better manage these ecosystems now and into the future, understanding the impacts of climate change and identifying potential refuges will help to prioritize management actions. In this study, we use a long-term dataset of observations of kelp percentage cover for two dominant canopy-forming species off the coast of Victoria, Australia: Ecklonia radiata and Phyllospora comosa.

View Article and Find Full Text PDF

Greening the Urban Landscape: Assessing the Impact of Tree-Planting Initiatives and Climate Influences on Miami-Dade County's Greenness.

Remote Sens (Basel)

January 2024

Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, Soffer Clinical Research Center Room 1065, Miami, FL 33136, USA.

In urban settings, trees and greenery play a vital role in environmental well-being and community vitality. This study explores the impact of Miami-Dade County's tree-planting initiative on urban greenness and considers the influence of climate dynamics. Using Landsat data from 2006 to 2019, we find stable overall greenness, with 5.

View Article and Find Full Text PDF

Thermal ecology of the Mexican Garter Snake (): temporal and spatial variations.

PeerJ

January 2025

Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.

Heterogeneous environments provide different daily and seasonal thermal conditions for snakes, resulting in temporal and spatial variations in body temperature (Tb). This study analyzes the Tb of in the forest and grassland of a Mexican locality through daily and seasonal profiling. The patterns were obtained from seminatural enclosures in the field with a point sampling strategy to analyze temporal and spatial variations in Tb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!