Chloroplast development requires the coordinated action of various proteins, many of which remain to be identified. Here, we report two novel genes, Mesophyll-cell RNAi Library line 7 (MRL7) and MRL7-Like (MRL7-L), that are involved in this process. An Arabidopsis knock-down transgenic plant (MRL7-RNAi) with delayed-greening phenotype was isolated from an RNA interference (RNAi) transformant library. Cotyledons and young leaves of MRL7-RNAi were pale in seedlings and gradually greened as the plant matured, while a knock-out in the MRL7 gene was seedling lethal. The MRL7 protein was shown to co-localize with a marker protein for nucleoids in chloroplasts, indicative of a role for the protein in chloroplast nucleic acid metabolism. Accordingly, chloroplast development was arrested upon loss of MRL7 function and the expression of plastid-encoded genes transcribed by plastid-encoded RNA polymerase (PEP) was significantly reduced in MRL7 knock-down and knock-out plants. A paralog of MRL7 (MRL7-L) was identified in the Arabidopsis genome. Both MRL7 and MRL7-L are only found in land plants and encode previously uncharacterized proteins without any known conserved domain. Like MRL7, knock-down of MRL7-L also resulted in a virescent phenotype, and a similar effect on plastid gene expression. However, the MRL7-L protein was localized to the chloroplast stroma. Taken together, our data indicate that the two paralogous proteins MRL7 and MRL7-L have essential but distinct roles during early chloroplast development and are involved in regulation of plastid gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcr054DOI Listing

Publication Analysis

Top Keywords

chloroplast development
16
plastid gene
12
gene expression
12
mrl7 mrl7-l
12
mrl7
10
proteins mrl7
8
mrl7-l essential
8
distinct roles
8
development involved
8
mrl7 knock-down
8

Similar Publications

Directed Inward Migration of S-Vacancy in BiS QDs for Selective Photocatalytic CO to CHOH.

Adv Sci (Weinh)

January 2025

College of Materials Science and Engineering, National and Local Joint Engineering Research Center for Green Processing, Technology of Agricultural and Forestry Biomass, Central South University of Forestry and Technology, Changsha, 410004, China.

The directional migration of S-vacancy is beneficial to the separation of photogenerated carriers and the transition of electrons in semiconductors. In this study, Bi/BiS@carboxylic-cellulose (CC) photocatalyst with bionic chloroplast structure is obtained by electron beam irradiation to induce S-vacancy in BiS@CC. The results of CO photoreduction experiments demonstrate that the reduction rate of CO to CHOH by Bi/BiS@CC-450 samples is 10.

View Article and Find Full Text PDF

Background: Zanthoxylum L., an important genus in the Rutaceae family, has great edible and medical values. However, the high degree of morphological similarity among species and the lack of sufficient chloroplast (cp) genomic resources have greatly impeded germplasm identification and phylogenetic analyses of

Methods: Here we assembled cp genomes of five widespread species (, , , and ) in China as a case study, comparative analysis of these assembled cp genomes.

View Article and Find Full Text PDF

Thunb. (1784) is primarily distributed in eastern Asia,  has a total length of 152,778 bp and consists of a large single copy (LSC) region of 84,517 bp, a small single copy (SSC) region of 18,277 bp, and two inverted repeat (IRs) regions of 24,992 bp . The GC content is 37.

View Article and Find Full Text PDF

A Comprehensive Analysis In Silico of Genes in Maize Revealed Their Potential Role in Response to Abiotic Stress.

Plants (Basel)

December 2024

Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.

β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!