The chemoreceptor-CheA kinase-CheW coupling protein complex, with ancillary associated proteins, is at the heart of chemotactic signal transduction in bacteria. The goal of this work was to determine the cellular stoichiometry of the chemotaxis signaling proteins in Bacillus subtilis. Quantitative immunoblotting was used to determine the total number of chemotaxis proteins in a single cell of B. subtilis. Significantly higher levels of chemoreceptors and much lower levels of CheA kinase were measured in B. subtilis than in Escherichia coli. The resulting cellular ratio of chemoreceptor dimers per CheA dimer in B. subtilis is roughly 23.0 ± 4.5 compared to 3.4 ± 0.8 receptor dimers per CheA dimer observed in E. coli, but the ratios of the coupling protein CheW to the CheA dimer are nearly identical in the two organisms. The ratios of CheB to CheR in B. subtilis are also very similar, although the overall levels of modification enzymes are higher. When the potential binding partners of CheD are deleted, the levels of CheD drop significantly. This finding suggests that B. subtilis selectively degrades excess chemotaxis proteins to maintain optimum ratios. Finally, the two cytoplasmic receptors were observed to localize among the other receptors at the cell poles and appear to participate in the chemoreceptor complex. These results suggest that there are many novel features of B. subtilis chemotaxis compared with the mechanism in E. coli, but they are built on a common core.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133262 | PMC |
http://dx.doi.org/10.1128/JB.01255-10 | DOI Listing |
Cytokine
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye.
Endogenous and exogenous factors play a role in endothelial dysfunction. Inflammation, leukocyte adhesion-aggregation, abnormal vascular proliferation, atherosclerosis, and hypertension are among the endogenous factors. Another factor that affects endothelial dysfunction is exogenous factors such as drug treatments, smoking, alcohol, and nutrition.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: The primary objective of this study was to examine whether ARID1A mutations confer a fitness advantage to gastric cancer from an immunological perspective, along with elucidating the underlying mechanism. Additionally, we aimed to identify the clinical potential of combining epigenetic inhibitors with immune checkpoint inhibitors to improve the efficacy of immunotherapy for gastric cancer.
Methods: The correlation between ARID1A gene expression and gastric cancer patient survival was analyzed using the GEO dataset GSE62254.
EMBO J
January 2025
Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Denali Therapeutics Inc., South San Francisco, CA, USA.
Background: Macrophages and microglia are myeloid cells that play critical roles in the surveillance of the local environment of the tissues in which they reside. The ability of these phagocytes to perform key functions is contingent on their capacity to sense extracellular cues and mount responses that involve chemotaxis, proliferation, cytokine secretion, and phagocytosis of various cargos for lysosomal clearance. Our overarching hypothesis is that lysosomal degradation of phagocytic cargoes is critical for the resolution of cellular/tissue damage, as well as of inflammation, and that failure to accomplish this step affects myeloid cell states and immune responses.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Brain Sciene, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background: Amyloid-beta (Aβ) deposition is a key pathological characteristic of Alzheimer's disease (AD). Microglia serves as a crucial system responsible for clearing Aβ. Activated microglia migrate towards Aβ deposits, engulf them, and breakdown Aβ through cathepsins within the lysosome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!