Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering.

J Struct Biol

Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Published: August 2011

DNA cloning and protein engineering are basic methodologies employed for various applications in all life-science disciplines. Manipulations of DNA however, could be a lengthy process that slows down subsequent experiments. To facilitate both DNA cloning and protein engineering, we present Transfer-PCR (TPCR), a novel approach that integrates in a single tube, PCR amplification of the target DNA from an origin vector and its subsequent integration into the destination vector. TPCR can be applied for incorporation of DNA fragments into any desired position within a circular plasmid without the need for purification of the intermediate PCR product and without the use of any commercial kit. Using several examples, we demonstrate the applicability of the TPCR platform for both DNA cloning and for multiple-site targeted mutagenesis. In both cases, we show that the TPCR reaction is most efficient within a narrow range of primer concentrations. In mutagenesis, TPCR is primarily advantageous for generation of combinatorial libraries of targeted mutants but could be also applied to generation of variants with specific multiple mutations throughout the target gene. Adaptation of the TPCR platform should facilitate, simplify and significantly reduce time and costs for diverse protein structure and functional studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2011.04.005DOI Listing

Publication Analysis

Top Keywords

dna cloning
16
cloning protein
12
protein engineering
12
transfer-pcr tpcr
8
tpcr platform
8
dna
7
tpcr
6
tpcr highway
4
highway dna
4
cloning
4

Similar Publications

It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.

View Article and Find Full Text PDF

Here, we present a previously undescribed approach to modify N-terminal sequences of recombinant proteins to increase their production yield in Escherichia coli. Prior research has demonstrated that the nucleotides immediately following the start codon can significantly influence protein expression. However, the impact of these sequences is construct-specific and is not universally applicable to all proteins.

View Article and Find Full Text PDF

Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.

Biotechnol Lett

December 2024

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.

Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.

View Article and Find Full Text PDF

European blueberries ( L.) can be found across the Northern Hemisphere, particularly in cool, temperate forests. These shrubs produce dark blue berries that are rich in vitamins, antioxidants, and anthocyanins making them valuable for both human consumption and food supplements.

View Article and Find Full Text PDF

Identification of Novel FosX Family Determinants from Diverse Environmental Samples.

J Glob Antimicrob Resist

December 2024

Centre for Antibiotic Resistance Research (CARe)in Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. Electronic address:

Objectives: This study aimed to identify novel fosfomycin resistance genes across diverse environmental samples, ranging in levels of anthropogenic pollution. We focused on fosfomycin resistance, and given its increasing clinical importance, explored the prevalence of these genes within different environmental contexts.

Methods: Metagenomic DNA was extracted from wastewater and sediment samples collected from sites in India, Sweden, and Antarctica.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!