Combining ion pairing agents for enhanced analysis of oligonucleotide therapeutics by reversed phase-ion pairing ultra performance liquid chromatography (UPLC).

J Chromatogr B Analyt Technol Biomed Life Sci

Exploratory Development Sciences, GlaxoSmithKline, RTP, NC 27709, USA.

Published: June 2011

AI Article Synopsis

  • The field of oligonucleotide therapeutics utilizes synthetic RNA and DNA to develop new treatments, driven by advancements in understanding their mechanisms and design.
  • Significant interest in these therapeutics arises from the quicker development of lead molecules and their potential to address tough-to-treat diseases.
  • A major challenge is creating effective methods for analyzing the purity of these compounds, as conventional techniques struggle with closely related impurities, but research shows that using multiple ion pairing agents can improve analysis and resolution.

Article Abstract

The burgeoning field of oligonucleotide therapeutics is based upon synthetically derived biopolymers comprised of relatively simple RNA and DNA building blocks. Significant gains in knowledge around mechanisms of action (RNA interference, RNA splicing, etc.) and oligonucleotide design (ASO, siRNA, DsiRNA, miRNA, locked nucleic acid, etc.) have been the main drivers of recent investment for this field [1,2]. As therapeutics, there is currently great interest in oligonucleotides due to the reduced time required to achieve lead molecules and to their potential for treating previously untractable diseases. One of the more challenging areas for the field of oligonucleotide therapeutics is the development of high-quality analysis schemes for the determination of purity in drug substance and product. This, in part, is due to the fact that the synthesis of oligonucleotides results in a significant number of closely related impurities that are not easily removed during purification [1]. As a result, these macromolecules (4000-8000 MW on average, depending on chain length) and their soup of closely related impurities are typically not well resolved from one another via conventional chromatographic approaches. One of the more common chromatographic techniques used for oligonucleotide analysis is reversed phase-ion pairing liquid chromatography (RP-IP). Our research led us to the discovery that the use of multiple ion pairing agents combined in the mobile phase can improve the overall chromatographic resolution and peak shape of the oligonucleotide analytes over the use of a single ion pairing agent alone, resulting in enhanced purity analysis and the opportunity to identify related impurities with greater certainty. In addition, the use of combined ion pairing agents allowed for the development of a "universal" method which has provided superior chromatography for several different oligonucleotide compounds and their related impurities regardless of differences in nucleotide sequence. The RP-IP UPLC method conditions are ESI-MS compatible and have allowed for the mass identification of five positional isomeric impurities chromatographically resolved and present at less than 1% of the nominal parent peak area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2011.03.051DOI Listing

Publication Analysis

Top Keywords

ion pairing
16
pairing agents
12
oligonucleotide therapeutics
12
reversed phase-ion
8
phase-ion pairing
8
liquid chromatography
8
field oligonucleotide
8
closely impurities
8
oligonucleotide
7
pairing
6

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.

Background: Reversible post-translational modifications, phosphorylation and dephosphorylation, on tau protein play a critical role in the microtubule (MT) modulation. However, abnormal tau phosphorylation, which occurs in tauopathies such as Alzheimer's disease (AD), causes the dissociation of tau from MTs. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments (PHF), and insoluble neurofibrillary tangles (NFTs), a hallmark of AD.

View Article and Find Full Text PDF

Background: The microtubule-associated Tau gene (MAPT) undergoes alternative splicing to produce isoforms with varying combinations of microtubule-binding region (MTBR) repeats (3R, 4R). The MTBR is the predominant region that forms paired helical filaments and neurofibrillary tangles fibrils in disease. Alzheimer's disease (AD) is a mixed Tauopathy containing both 3R and 4R isoforms.

View Article and Find Full Text PDF

Phthalocyanine aggregates as semiconductor-like photocatalysts for hypoxic-tumor photodynamic immunotherapy.

Nat Commun

January 2025

Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, China.

Photodynamic immunotherapy (PIT) has emerged as a promising approach for efficient eradication of primary tumors and inhibition of tumor metastasis. However, most of photosensitizers (PSs) for PIT exhibit notable oxygen dependence. Herein, a concept emphasizing on transition from molecular PSs into semiconductor-like photocatalysts is proposed, which converts the PSs from type II photoreaction to efficient type I photoreaction.

View Article and Find Full Text PDF

Unified description of thermal and nonthermal laser-induced ultrafast structural changes in materials.

Sci Rep

December 2024

Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.

The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!