Nuclear factor of activated T cell (NFAT) is a key transcription factor for receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. However, it is unclear whether NFAT plays a role in the expression of RANKL in osteoblasts. High extracellular calcium ([Ca(2+)](o)) increases intracellular calcium, enhances RANKL expression in osteoblasts/stromal cells, and induces osteoclastogenesis in a coculture of osteoblasts and hematopoietic bone marrow cells. Because intracellular calcium signaling activates the calcineurin/NFAT pathway, we examined the role of NFAT activation on high [Ca(2+)](o)-induced RANKL expression in MC3T3-E1 subclone 4 (MC4) cells. Among the family of NFAT transcription factors, expression of NFATc1 and NFATc3, but not NFATc2, NFATc4 or NFAT5, was observed in MC4 cells. High [Ca(2+)](o) increased the expression levels of NFATc1, NFATc3 and RANKL. Cyclosporin A and FK506, inhibitors of calcineurin phosphatase, blocked high [Ca(2+)](o)-induced expression of NFAT and RANKL. Knockdown of NFATc1 and NFATc3 by siRNA prevented high [Ca(2+)](o)-induced RANKL expression, whereas overexpression of NFATc1 and NFATc3 induced RANKL expression. Furthermore, overexpressed NFATc1 upregulated NFATc3 expression, but NFATc1 knockdown decreased NFATc3 expression. Chromatin immunoprecipitation and reporter assay results showed that NFATc3, but not NFATc1, directly binds to the RANKL promoter and stimulates RANKL expression. In summary, these results demonstrate that high [Ca(2+)](o) increases expression of RANKL via activation of the calcineurin/NFAT pathway in osteoblasts. In addition, high [Ca(2+)](o) induces the activation and expression of NFATc1; NFATc3 expression and activity are subsequently increased; and NFATc3 directly binds to the RANKL promoter to increase its expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2011.04.006DOI Listing

Publication Analysis

Top Keywords

rankl expression
20
nfatc1 nfatc3
20
expression
16
high [ca2+]o-induced
12
expression nfatc1
12
high [ca2+]o
12
nfatc3 expression
12
rankl
11
nfatc3
10
high
8

Similar Publications

Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice.

Pharmaceuticals (Basel)

December 2024

Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China.

Type 2 diabetes and weight loss are associated with detrimental skeletal health. Incretin-based therapies (GLP-1 receptor agonists, and dual GIP/GLP-1 receptor agonists) are used clinically to treat diabetes and obesity. The potential effects of semaglutide and tirzepatide on bone metabolism in type 2 diabetic mice remain uncertain.

View Article and Find Full Text PDF

Osteogenic CpG Oligodeoxynucleotide, iSN40, Inhibits Osteoclastogenesis in a TLR9-Dependent Manner.

Life (Basel)

November 2024

Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan.

A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of iSN40 to validate its potential as an osteoporosis drug. The murine monocyte/macrophage cell line RAW264.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) expression in mesenchymal stem cells (MSCs) has been shown to play a pivotal role in modulating cartilage regeneration and immune responses, particularly in the context of diseases that involve both degenerative processes and inflammation, such as osteoarthritis (OA). However, the precise mechanism through which IL-6 and other immune-regulatory factors influence the therapeutic efficacy of autologous adipose-derived stem cells (ASCs) transplantation in OA treatment remains to be fully elucidated. This study aims to investigate the relationship between IL-6 expression in autologous ASCs isolated from OA patients and their impact on immune modulation, particularly focusing on the regulation of Receptor Activator of Nuclear factor Kappa-Β Ligand (RANKL), a key mediator of immune-driven cartilage degradation in OA.

View Article and Find Full Text PDF

TGF-β3 Restrains Osteoclastic Resorption Through Autophagy.

Bioengineering (Basel)

November 2024

State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, No. 855 East Xingye Avenue, Guangzhou 510632, China.

While TGF-β3 promoted defect healing in a primate baboon skull defect model and patients, it remains unclear whether TGF-β3 affects the formation of osteoclasts and bone resorption between osteogenesis and osteolysis. Analysis of the full transcriptome of hPDLSCs (human periodontal ligament stem cells) revealed that the expression of RANKL was significantly up-regulated after TGF-β3 treatment during osteogenesis, which suggests its involvement in clock-controlled autophagy in bone metabolism. TRAP staining and bone resorption lacunae were used to assess the osteoclasts formed from RANKL-induced differentiated BMMs.

View Article and Find Full Text PDF

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!