Influence of multiple cysteines on human 3-hydroxy-3-methylglutaryl-CoA lyase activity and formation of inter-subunit adducts.

Arch Biochem Biophys

Division of Molecular Biology and Biochemistry, University of Missouri, Kansas City, MO 64110, United States.

Published: July 2011

Human 3-hydroxy-3-methylglutaryl-CoA lyase catalyzes formation of acetyl-CoA and acetoacetate in a reaction that requires divalent cation and is stimulated by sulfhydryl protective reagents. The enzyme is a homodimer and inter-subunit adducts form in the absence of reducing agents or upon treatment with cysteine selective crosslinking agents. To address the influence of cysteines on enzyme activity and formation of inter-subunit and intra-subunit adducts, single serine substitutions have been engineered for each enzyme cysteine. Enzyme activity varies for each cysteine→serine mutant protein and different mutations have widely different effects on recovery of activity upon DTT treatment of non-reduced enzyme. These levels of enzyme activity do not strongly correlate with formation of inter-subunit adducts by these HMGCL mutants. C170S, C266S, and C323S proteins do not form inter-subunit disulfide adducts but such an adduct is restored in the C170S/C174S double mutant. Coexpression of HMGCL proteins encoded by C266S and C323S expression plasmids supports formation of a C266S/C323S heterodimer which does form a covalent inter-subunit adduct. These observations are interpreted in the context of competition between cysteines in formation of intra-subunit and inter-subunit heterodisulfide adducts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130621PMC
http://dx.doi.org/10.1016/j.abb.2011.04.004DOI Listing

Publication Analysis

Top Keywords

formation inter-subunit
12
inter-subunit adducts
12
enzyme activity
12
human 3-hydroxy-3-methylglutaryl-coa
8
3-hydroxy-3-methylglutaryl-coa lyase
8
activity formation
8
c266s c323s
8
inter-subunit
7
formation
6
adducts
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!