Hydrogen sulfide (H(2)S) is an important signaling molecule in various mammalian cells and tissues. H(2)S is synthesized from L-cysteine and regulates several cellular and physiological phenomena (vasorelaxation, hormone secretion, and apoptosis) and multicellular events (neuromodulation and inflammatory responses). H(2)S can be produced in pancreatic β-cells by cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE). H(2)S inhibits insulin release and regulates β-cell survival. We found that glucose stimulation increased CSE expression at transcript and protein levels in mouse pancreatic islets. We also found that H(2)S protects β-cells that were chronically exposed to high glucose from apoptotic cell death. Loss of β-cell mass and failures of β-cell function are important in the pathogenesis and/or progression of diabetes mellitus; therefore, molecular analyses of the mechanisms of H(2)S production and its protective effects on β-cells may lead to new insights into diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.11r01cp | DOI Listing |
J Fluoresc
December 2024
Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia.
In this work, a novel fluorescent probe (compound 2) based on the Intramolecular charge transfer (ICT) mechanism was designed and successfully applied to determine HS in human serum. Fluorophore 1,8-naphthalimide was chosen, while the azide group was the recognition group for HS determination. By introducing p-toluidine moiety on the imide part of the molecule, a donor-acceptor (D-A) conjugated system was formed.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Biology, University of Konstanz, Konstanz, Germany.
Plant-produced sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is one of the most abundant sulfur-containing compounds in nature and its bacterial degradation plays an important role in the biogeochemical sulfur and carbon cycles and in all habitats where SQ is produced and degraded, particularly in gut microbiomes. Here, we report the enrichment and characterization of a strictly anaerobic SQ-degrading bacterial consortium that produces the C-sulfonate isethionate (ISE) as the major product but also the C-sulfonate 2,3-dihydroxypropanesulfonate (DHPS), with concomitant production of acetate and hydrogen (H). In the second step, the ISE was degraded completely to hydrogen sulfide (HS) when an additional electron donor (external H) was supplied to the consortium.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Ultrasonography, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:
Hydrogen sulfide (HS) shows promise in treating myocardial ischemia-reperfusion injury (MIRI), but the challenge of controlled and sustained release hinders its clinical utility. In this study, we developed a platelet membrane-encapsulated mesoporous silica nanoparticle loaded with the HS donor diallyl trisulfide (PM-MSN-DATS). PM-MSN-DATS demonstrated optimal encapsulation efficiency and drug-loading content.
View Article and Find Full Text PDFSci Total Environ
December 2024
UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia.
Anaerobic co-digestion is emerging as an option for wastewater biosolids management. Variations in treatment parameters can impact odour emissions and, in turn, odour nuisance reduces community acceptance and alternatives for beneficial reuse of biosolids via land application. This study assessed odour emissions from digested sludge and biosolids resulting from the anaerobic co-digestion of wastewater sludge with beverage rejects (beer and cola) and food wastes.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, IIT Jodhpur, NH 62, Karwar, Jodhpur, Jodhpur, Rajasthan, 342011, INDIA.
The industrialization has severely impacted the ecosystem because of intensive use of chemicals and gases, causing the undesired outcomes such as hazardous gases, e.g., carbon monoxide (CO), nitrox oxide (NOx), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S) and even volatile organic compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!