The biological activity of Humanin analogs correlates with structure stabilities in solution.

Int J Biol Macromol

Alliance Protein Laboratories, 3957 Corte Cancion, Thousand Oaks, CA 91360, United States.

Published: July 2011

AI Article Synopsis

  • A single mutation in the Humanin peptide has caused significant differences in its neuroprotective abilities, with the S7A variant losing activity and the S14G variant gaining it by about 1000 times.
  • Recent structural analysis suggested that these mutations might affect the peptide's stability.
  • Experiments revealed that both peptides had similar disordered structures at low temperatures, but at physiological temperature (37°C), the S14G-HN remained more stable while S7A-HN showed greater structural changes, indicating a correlation between stability and neuroprotective activity.

Article Abstract

A single mutation has resulted in large differences in neuroprotective activity of a 24 amino acid Humanin (HN). A mutation of Ser7Ala (S7A-HN) resulted in loss of activity, while a mutation of Ser14Gly (S14G-HN) resulted in about 1000-fold increase. The mechanism of the effects conferred by these mutations have been totally unclear, although our recent structure analysis suggested a possibility of the effect of mutation on the structure stability. Here, we have studied the effects of buffer and temperature on the structure of these three HN peptides. These peptides showed a similar disordered structure at 10°C in 10mM phosphate, pH 6.0. They were also similar in phosphate-buffered saline (PBS) as long as the temperature was kept low at 10°C. However, a large difference was observed in both phosphate buffer and PBS between the peptides, when the temperature was raised to a physiological temperature of 37°C. While S14G-HN showed small changes in both solutions at 37°C, the less active HN and inactive S7A-HN showed much larger changes under the identical conditions. In addition, it appeared that structure change at 37°C was faster for S7A-HN than HN. These results show that the structure stability at 37°C increases in the order of S7A-HN, HN and S14G-HN, in correlation with their neuroprotective activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2011.04.003DOI Listing

Publication Analysis

Top Keywords

structure stability
8
structure
7
biological activity
4
activity humanin
4
humanin analogs
4
analogs correlates
4
correlates structure
4
structure stabilities
4
stabilities solution
4
solution single
4

Similar Publications

The Ca/calmodulin-dependent protein kinase II α (CaMKIIα) plays a crucial role in regulating neuronal signaling and higher brain functions, being involved in various brain diseases. Utilization of small molecules targeting the CaMKIIα hub domain has proved to be a promising strategy for specific CaMKIIα modulation and future therapy. Through an structure-based virtual screening campaign, we herein identified 2-arylthiazole-4-carboxylic acids as a new class of high-affinity CaMKIIα hub ligands.

View Article and Find Full Text PDF

Regulating the Thermodynamic Uniformity and Kinetic Diffusion of Zinc Anodes for Deep Cycling of Ah-Level Aqueous Zinc-Metal Batteries.

ACS Nano

January 2025

Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.

View Article and Find Full Text PDF

Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.

View Article and Find Full Text PDF

Design Strategy of PepNzymes-SH for an Emerging Catalyst with Serine Hydrolase-Like Functionality.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Serine hydrolases, as a class of green catalysts with hydrolytic and dehydrating activities, hold significant application value in the fields of biosynthesis and organic synthesis. However, practical applications face numerous challenges, including maintaining enzyme stability and managing usage costs. PepNzymes-SH, an emerging green catalytic material with enzyme-like activity, overcomes the operational limitations of natural enzymes and holds great promise as a substitute for hydrolases.

View Article and Find Full Text PDF

Objective: Aim: Study the mechanism of interaction between the 'sacroiliac joint - screw' system and determine the optimal parameters of the stabilizing structure, the strength of the system connection through computer modeling, and anatomical-biomechanical experiment.

Patients And Methods: Materials and Methods: The optimal parameters of the stabilizing structure for the sacroiliac joint were calculated using software package MathCAD. To validate the results of the numerical modeling, corresponding investigations of mechanical characteristics and determination of stiffness of the studied systems were conducted by an upgraded testing stand, TIRAtest-2151.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!