Establishment of a murine epidermal cell line suitable for in vitro and in vivo skin modelling.

BMC Dermatol

Molecular Oncology Unit, Epithelial Biomedicine Division, Basic Research Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain.

Published: April 2011

Background: Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies. However, development of three-dimensional models of skin using keratinocytes from normal and/or genetically modified mice has been hindered by the difficulty to subculture murine epidermal keratinocytes.

Methods: We have generated a murine epidermal cell line by serially passaging keratinocytes isolated from the back skin of adult mice. We have termed this cell line COCA. Cell culture is done in fully defined media and does not require feeder cells or any other coating methods.

Results: COCA retained its capacity to differentiate and stratify in response to increased calcium concentration in the cell culture medium for more than 75 passages. These cells, including late passage, can form epidermis-like structures in three-dimensional in vitro models with a well-preserved pattern of proliferation and differentiation. Furthermore, these cells form epidermis in grafting assays in vivo, and do not develop tumorigenic ability.

Conclusions: We propose that COCA constitutes a good experimental system for in vitro and in vivo skin modelling. Also, cell lines from genetically modified mice of interest in skin biology could be established using the method we have developed. COCA keratinocytes would be a suitable control, within a similar background, when studying the biological implications of these alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113952PMC
http://dx.doi.org/10.1186/1471-5945-11-9DOI Listing

Publication Analysis

Top Keywords

murine epidermal
12
genetically modified
12
modified mice
12
epidermal cell
8
vitro vivo
8
vivo skin
8
skin modelling
8
cell culture
8
cell
6
skin
6

Similar Publications

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.

View Article and Find Full Text PDF

Classification of Breast Cancer Through the Perspective of Cell Identity Models.

Adv Exp Med Biol

January 2025

INSERM, Bergonie Cancer Institute, University of Bordeaux, Bordeaux, France.

The mammary epithelium has an inner luminal layer that contains estrogen receptor (ER)-positive hormone-sensing cells and ER-negative alveolar/secretory cells, and an outer basal layer that contains myoepithelial/stem cells. Most human tumours resemble either hormone-sensing cells or alveolar/secretory cells. The most widely used molecular classification, the Intrinsic classification, assigns hormone-sensing tumours to Luminal A/B and human epidermal growth factor 2-enriched (HER2E)/molecular apocrine (MA)/luminal androgen receptor (LAR)-positive classes, and alveolar/secretory tumours to the Basal-like class.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.

View Article and Find Full Text PDF

Photobiomodulation (PBM) is considered an effective and safe therapeutic modality in supporting the treatment of complications from a global pandemic-diabetes. In this study, PBM therapy is investigated to accelerate wound healing in diabetic mice (DM), under the combined biological effects of red light from a red organic light-emitting diode (ROLED) and near-infrared (NIR) light from an NIR conversion film (NCF) with dispersed CuInS/ZnS quantum dots (QDs). The QD concentration and the NCF structure were optimized to maximize the optical properties and mechanical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!