Hyperactivation of NF-κB via the MEK signaling is indispensable for the inhibitory effect of cAMP on DNA damage-induced cell death.

Mol Cancer

Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, PO Box 1112-Blindern, N-0317 Oslo, Norway.

Published: April 2011

With cAMP signaling having a profound inhibitory effect on DNA damage-induced apoptosis in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, understanding how this signaling pathway affects the survival capacity of the cell has important implications for cancer therapy. We have recently shown that p53 is critical for the inhibitory effect of cAMP on genotoxic agents-mediated apoptosis in BCP-ALLs. Here, we show that elevation of cAMP levels in cells exposed to DNA damage enhances the nuclear translocation and DNA binding of NF-κB by accelerating the phosphorylation of IKKβ and thereby phosphorylation and degradation of IκBα. Furthermore, we show that the ability of cAMP to potentiate the ionizing radiation-induced activation of NF-κB requires the activity of MEK. Importantly, pharmacological or genetic ablation of NF-κB reversed the inhibitory effect of cAMP on DNA damage-induced apoptosis, demonstrating that, in addition to p53, cAMP relies on the activity of NF-κB to provide cells with a survival advantage in the face of DNA damage. Collectively, our results uncover a novel and important interaction between the cAMP and NF-κB pathways that may have implications for the targeted treatment of lymphoid malignancies, such as BCP-ALL, in which aberrant NF-κB activity functions as a driving force for treatment resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095569PMC
http://dx.doi.org/10.1186/1476-4598-10-45DOI Listing

Publication Analysis

Top Keywords

inhibitory camp
12
dna damage-induced
12
camp
8
camp dna
8
damage-induced apoptosis
8
dna damage
8
dna
6
nf-κb
6
hyperactivation nf-κb
4
nf-κb mek
4

Similar Publications

This study examined the effects of treadmill running (TR) regimens on craniofacial pain- and anxiety-like behaviors, as well as their effects on neural changes in specific brain regions of male mice subjected to repeated social defeat stress (SDS) for 10 days. Behavioral and immunohistochemical experiments were conducted to evaluate the impact of TR regimens on SDS-related those behaviors, as well as epigenetic and neural activity markers in the anterior cingulate cortex (ACC), insular cortex (IC), rostral ventromedial medulla (RVM), and cervical spinal dorsal horn (C2). Behavioral responses were quantified using multiple tests, while immunohistochemistry measured histone H3 acetylation, histone deacetylases (HDAC1, HDAC2), and neural activity markers (FosB and phosphorylated cAMP response element-binding protein (pCREB).

View Article and Find Full Text PDF

Angiogenesis, a meticulously regulated process essential for both normal development and pathological conditions, necessitates a comprehensive understanding of the endothelial mechanisms governing its progression. Leveraging the zebrafish model and NgAgo knockdown system to identify target genes influencing angiogenesis, our study highlights the significant role of gastric inhibitory polypeptide (GIP) and its receptor (GIPR) in this process. While GIP has been extensively studied for its insulinotropic and glucagonotropic effects, its role in angiogenesis remains unexplored.

View Article and Find Full Text PDF

Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of .

Biofilm

June 2025

Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

The biofilm formation of , a major human fungal pathogen, represents a crucial virulence factor during candidiasis. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, has emerged as a potential antibiofilm agent against . .

View Article and Find Full Text PDF

Loss of anticancer NK cell function in AML patients is associated with fatal disease progression and remains poorly understood. Here, we demonstrate that AML-blasts isolated from patients rapidly inhibit NK cell function and escape NK cell-mediated killing. Transcriptome analysis of NK cells exposed to AML-blasts revealed increased CREM expression and transcriptional activity, indicating enhanced cAMP signalling, confirmed by uniform production of the cAMP-inducing prostanoid PGE2 by all AML-blast isolates from patients.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!