AI Article Synopsis

  • - This text introduces a new method for the asymmetric α,α-bisalkylation of ketones that have protons at both the α and α' positions, achieving high regio- and stereoselectivity.
  • - The method relies on complex-induced syn-deprotonation (CIS-D), which alters the typical behavior of lithium diisopropylamide (LDA) by selectively removing protons in a way that contrasts with conventional expectations.
  • - The effectiveness of this approach is highlighted through a formal synthesis of the enantiomers (R)- and (S)-stigmolone, demonstrating that either ketone can be accessed using only one enantiomer of the auxiliary compound.

Article Abstract

The first general method for the asymmetric α,α-bisalkylation of ketones having both α- and α'-protons is described. Both excellent regio- and stereoselectivity result. The transformation is enabled by complex-induced syn-deprotonation (CIS-D), which completely reverses the inherent preference of lithium diisopropylamide (LDA) to remove the less sterically hindered of two similarly acidic protons. CIS-D also overrides the normal tendency of LDA to remove the more strongly acidic proton in a substrate having protons differing significantly in their acidity. The regiochemical outcome is, thus, the opposite of that normally obtained for kinetic LDA-mediated deprotonation of ketones and (S)-1-amino-2-methoxymethylpyrrolidine/(R)-1-amino-2-methoxymethylpyrrolidine (SAMP/RAMP)hydrazones. Conveniently, this strategy allows access to either ketone enantiomer using a single enantiomer of the auxiliary. The utility of this method is demonstrated by a concise and highly efficient formal synthesis of both (R)- and (S)-stigmolone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja202267kDOI Listing

Publication Analysis

Top Keywords

asymmetric αα-bisalkylation
8
αα-bisalkylation ketones
8
complex-induced syn-deprotonation
8
lda remove
8
regioselective asymmetric
4
ketones complex-induced
4
syn-deprotonation chiral
4
chiral n-amino
4
n-amino cyclic
4
cyclic carbamate
4

Similar Publications

Role of air sinuses in sound reception of the Yangtze finless porpoise: A numerical study.

J Acoust Soc Am

December 2024

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.

Although air sinuses are prevalent in odontocetes and are an integral component of their sound reception system, the acoustic function of these air-filled structures remains largely unknown. To address this, we developed a numerical model using computed tomography data from a Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) to investigate the role of the air sinuses in sound reception. By comparing sound reception characteristics between model cases with and without the air sinuses, we found that the air sinuses improved sound reception directivity.

View Article and Find Full Text PDF

Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation.

Appl Microbiol Biotechnol

December 2024

Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.

Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.

View Article and Find Full Text PDF

First Report of Microplastics in Wild Long-Tailed Macaque () Feces at Kosumpee Forest Park, Maha Sarakham, Thailand.

Vet Sci

December 2024

Departments of Psychology, Global Health, and Anthropology, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA.

Microplastic pollution is a global concern arising from the extensive production and use of plastics. The prevalence of microplastics (MPs) in the environment is escalating due in large part to the excessive use of plastics in various human-related activities. Consequently, animals are being exposed to MPs through dietary intake, which poses significant health risks to the wild populations.

View Article and Find Full Text PDF

Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.

View Article and Find Full Text PDF

Asymmetric Membranes Obtained from Sulfonated HIPS Waste with Potential Application in Wastewater Treatment.

Membranes (Basel)

November 2024

CONAHCYT-Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico.

The recovery and reuse of high-impact polystyrene (HIPS) into high-value products is crucial for reducing environmental thermoplastics waste and promoting sustainable materials for various applications. In this study, asymmetric membranes obtained from sulfonated HIPS waste were used for salt and dye removals. The incorporation of sulfonic acid (-SOH) groups into HIPS waste by direct chemical sulfonation with chlorosulfonic acid (CSA), at two different concentrations, was investigated to impart antifouling properties in membranes for water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!