The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), and its fungal symbiont Raffaellea lauricola Harrington, Fraedrich, and Aghayeva are responsible for widespread redbay, Persea borbonia (L.) Spreng., mortality in the southern United States. Effective traps and lures are needed to monitor spread of the beetle and for early detection at ports-of-entry, so we conducted a series of experiments to find the best trap design, color, lure, and trap position for detection of X. glabratus. The best trap and lure combination was then tested at seven sites varying in beetle abundance and at one site throughout the year to see how season and beetle population affected performance. Manuka oil proved to be the most effective lure tested, particularly when considering cost and availability. Traps baited with manuka oil lures releasing 5 mg/d caught as many beetles as those baited with lures releasing 200 mg/d. Distributing manuka oil lures from the top to the bottom of eight-unit funnel traps resulted in similar numbers of X. glabratus as a single lure in the middle. Trap color had little effect on captures in sticky traps or cross-vane traps. Funnel traps caught twice as many beetles as cross-vane traps and three times as many as sticky traps but mean catch per trap was not significantly different. When comparing height, traps 1.5 m above the ground captured 85% of the beetles collected but a few were caught at each height up to 15 m. Funnel trap captures exhibited a strong linear relationship (r2 = 0.79) with X. glabratus attack density and they performed well throughout the year. Catching beetles at low densities is important to port of entry monitoring programs where early detection of infestations is essential. Our trials show that multiple funnel traps baited with a single manuka oil lure were effective for capturing X. glabratus even when no infested trees were visible in the area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/EC10263 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!