In biotechnology, extraction by means of aqueous biphasic systems (ABS) is known as a promising tool for the recovery and purification of bio-molecules. Over the past decade, the increasing emphasis on cleaner and environmentally benign extraction procedures has led to enhanced interest in the ABS containing ionic liquids (ILs)-a new class of non-volatile alternative solvents. ABS composed of the hydrophilic IL {1-butyl-3-methylimidazolium bromide ([C4 mim]Br)} and potassium citrate-which is easily degraded-represents a clean media to green separation of bio-molecules. In this regard, here, the extraction capability of this ABS was evaluated through its application to the extraction of some amino acids. To gain an insight into the driving forces of amino acid partitioning in the studied IL-based ABS, the distribution of five model amino acids (L-tryptophan, L-phenylalanine, L-tyrosine, L-leucine, and L-valine) at different aqueous medium pH values and different phase compositions was investigated. The studies indicated that hydrophobic interactions were the main driving force, although electrostatic interactions and salting-out effects were also important for the transfer of the amino acids. Moreover, based on the statistical analysis of the driving forces of amino acid partitioning in the studied IL-based ABS, a model was established to describe the partition coefficient of three model amino acids, L-tryptophan, L-phenylalanine, and L-valine, and employed to predict the partition coefficient of two other model amino acids, L-tyrosine and L-leucine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.613DOI Listing

Publication Analysis

Top Keywords

amino acids
24
model amino
12
aqueous biphasic
8
driving forces
8
forces amino
8
amino acid
8
acid partitioning
8
partitioning studied
8
studied il-based
8
il-based abs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!