The preparation of novel immobilized and stabilized derivatives of trypsin is reported here. The new derivatives preserved 80% of the initial catalytic activity toward synthetic substrates [benzoyl-arginine p-nitroanilide (BAPNA)] and were 50,000-fold more thermally stable than the diluted soluble enzyme in the absence of autolysis. Trypsin was immobilized on highly activated glyoxyl-Sepharose following a two-step immobilization strategy: (a) first, a multipoint covalent immobilization at pH 8.5 that only involves low pK(a) amino groups (e.g., those derived from the activation of trypsin from trypsinogen) is performed and (b) next, an additional alkaline incubation at pH 10 is performed to favor an intense, additional multipoint immobilization between the high concentration of proximate aldehyde groups on the support surface and the high pK(a) amino groups at the enzyme surface region that participated in the first immobilization step. Interestingly, the new, highly stable trypsin derivatives were also much more active in the proteolysis of high molecular weight proteins when compared with a nonstabilized derivative prepared on CNBr-activated Sepharose. In fact, all the proteins contained a cheese whey extract had been completely proteolyzed after 6 h at pH 9 and 50°C, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Under these experimental conditions, the immobilized biocatalysts preserve more than 90% of their initial activity after 20 days. Analysis of the three-dimensional (3D) structure of the best immobilized trypsin derivative showed a surface region containing two amino terminal groups and five lysine (Lys) residues that may be responsible for this novel and interesting immobilization and stabilization. Moreover, this region is relatively far from the active site of the enzyme, which could explain the good results obtained for the hydrolysis of high-molecular weight proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.600 | DOI Listing |
Molecules
January 2025
School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China.
Climate change and the energy crisis, driven by excessive CO emissions, have emerged as pressing global challenges. The conversion of CO into high-value chemicals not only mitigates atmospheric CO levels but also optimizes carbon resource utilization. Enzyme-catalyzed carbon technology offers a green and efficient approach to CO conversion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.
This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.
View Article and Find Full Text PDFMicroorganisms
January 2025
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China.
This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.
This study introduces a sustainable approach for enhancing the fire retardancy and smoke suppression of poly(lactic acid) (PLA) composites, contributing to addressing one of the major challenges in biocomposites that limits their application in various engineering fields, as automotive and construction sectors. Flax fibers (FF) were surface functionalized with a novel organic-inorganic hybrid flame retardant (FR), offering a sustainable bioinspired approach that mitigates potential mechanical properties impairment and FR leaching, which can cause environmental concerns and reduced composite durability. The process involves a three-step coating procedure.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
Enzyme immobilization is an efficient and cost-effective approach to recovering, stabilizing, and enhancing enzyme catalytic properties. It is a challenge, however, for coimmobilized multiple enzymes to perform consecutive reactions without being inactivated under similar conditions. Here, we present a facile enzyme immobilization platform using β-lactoglobulin amyloid fibril hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!