Larval biotherapy is a debridement tool used in wound management. The mechanism of action involves degradation of eschar by serine proteases including chymotrypsin within the alimentary fluids of first instar Lucilia sericata. With the rationale of obviating some limitations of biotherapy, including cost, complexity of use, and patient reticence, the present study describes a mobile hydrogel formulation containing freeze-dried recombinant L. sericata chymotrypsin designed for topical application. Neither freeze-drying nor formulation into the hydrogel significantly attenuated the measured activity of released enzyme compared to fresh-frozen enzyme in aqueous solution. Gel electrophoresis confirmed qualitatively that the chymotrypsin/hydrogel formulation both with and without supplementary urea at 10% (w) /(v) degraded human chronic wound eschar ex vivo. Mindful that the hallmark of intractability of chronic wounds is aberrant biochemistry, the pH activity profile for the enzyme/hydrogel formulation was compared with exudate pH in chronic wounds of mixed aetiology in a cohort of 48 hospital in-patients. Five patients' wounds were acidic, however, the remainder were predominantly alkaline and coincided with the pH optimum for the insect enzyme. Thus, a recombinant L. sericata chymotrypsin and hydrogel formulation could represent a pragmatic alternative to larval therapy for the management of chronic wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.587DOI Listing

Publication Analysis

Top Keywords

sericata chymotrypsin
12
hydrogel formulation
12
chronic wounds
12
lucilia sericata
8
wound eschar
8
eschar vivo
8
recombinant sericata
8
formulation
6
recombinant lucilia
4
sericata
4

Similar Publications

Lucilia sericata, one of the most common species of the Calliphoridae family, is found in large numbers around droppings, garbage and carcasses. This fly species is important in medicine, forensics and veterinary medicine. The larvae of the parasite are important both in veterinary medicine and in combating of the animal diseases, as they cause significant losses in animal production.

View Article and Find Full Text PDF

Lucilia sericata larvae are used in maggot debridement therapy, a traditional wound healing approach that has recently been approved for the treatment of chronic wounds. Maggot excretion products (MEP) contain many different proteases that promote disinfection, debridement and the acceleration of wound healing, e.g.

View Article and Find Full Text PDF

Venous leg ulcer slough is unpleasant to the patient and difficult to manage clinically. It harbours infection, also preventing wound management materials and dressings from supporting the underlying viable tissues. In other words, slough has significant nuisance value in the tissue viability clinic.

View Article and Find Full Text PDF

Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation.

Appl Environ Microbiol

February 2013

Medical Microbiology and Infectious Diseases, Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom.

Staphylococcus aureus and Staphylococcus epidermidis biofilms cause chronic infections due to their ability to form biofilms. The excretions/secretions of Lucilia sericata larvae (maggots) have effective activity for debridement and disruption of bacterial biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-dependent bacterial biofilm formation mechanisms.

View Article and Find Full Text PDF

Expression of a cGMP compatible Lucilia sericata insect serine proteinase debridement enzyme.

Biotechnol Prog

July 2012

Immune Modulation Research Group, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Previously, we demonstrated the effectiveness of a research grade recombinant chymotrypsin, derived from the larvae of Lucilia sericata, in "debriding" slough/eschar from venous leg ulcers ex vivo. Furthermore, we were able to formulate this enzyme for successful delivery to in vitro wound healing assays, from a prototype hydrogel wound dressing, and showed that enzyme delivered in this way could degrade wound tissue ex vivo. Recently, to progress biotechnological development of the enzyme as a potential therapeutic product, we explored expression using current good manufacturing practice (cGMP) guidelines, and now report that a recombinant chymotrypsin I zymogen from L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!