Background: B-cell receptors (BCRs) and their recognition of specific epitopes may play a pivotal role in the development and progression of chronic lymphocytic leukemia (CLL). In this study, the authors set up a model system to explore epitope reactivity and its clinical relevance in CLL.
Methods: Epitope-mimicking peptides were selected from phage display libraries on 6 CLL BCRs from randomly chosen patients. The binding of the 6 index epitope mimics was evaluated in a set of 100 unrelated CLL samples. Epitope recognition patterns were correlated with the clinical course of the disease.
Results: Surprisingly, all CLL samples recognized 1 or several index epitopes, and some revealed marked polyreactivity. Patients with CLL who expressed BCRs that reacted with ≥5 epitope mimics had a significantly worse clinical course than less polyreactive patients (median time to first treatment, 24 months vs 102 months). This effect was independent of otherwise known prognostic markers.
Conclusions: The authors introduced a system with which to model epitope reactivity of CLL BCRs without previous knowledge of potential antigens. The findings indicated that a polyreactive epitope recognition pattern may be a determinant of an aggressive clinical course in this disease. This further emphasizes the functional and prognostic relevance of BCR epitope recognition in CLL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cncr.25755 | DOI Listing |
Nat Immunol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
This study aimed to elucidate the complexity of the humoral immune response in COVID-19 patients with varying disease trajectories using a SARS-CoV-2 whole proteome peptide microarray chip. The microarray, containing 5347 peptides spanning the entire SARS-CoV-2 proteome and key variants of concern, was used to analyze IgG responses in 10 severe-to-recovered, 9 nonsevere-to-severe cases, and 10 control case (5 pre-pandemic and 5 SARS-CoV-2-negative) plasma samples. We identified 1151 IgG-reactive peptides corresponding to 647 epitopes, with 207 peptides being cross-reactive across 124 epitopes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Technologies, Division of Biotechnology, University of Turku, Medisiina D, 5th floor, Kiinamyllynkatu 10, 20520, Turku, Finland.
Glycosylation changes of circulating proteins carrying the CA19-9 antigen may offer new targets for detection methods to be explored for the diagnosis of epithelial ovarian cancer (EOC). Search for assay designs for targets initially captured by a CA19-9 antigen reactive antibody from human body fluids by probing with fluorescent nanoparticles coated with lectins or antibodies to known EOC associated proteins. CA19-9 antigens were immobilized from ascites fluids, ovarian cyst fluids or serum samples using monoclonal antibody C192 followed by probing of carrier proteins using anti-MUC16, anti-MUC1 and, anti STn antibodies and seven lectins, all separately coated on nanoparticles.
View Article and Find Full Text PDFViruses
January 2025
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Moderna, Inc, Cambridge, Massachusetts, USA.
The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!