The application of membrane bioreactors (MBR) for wastewater treatment is growing worldwide due to their compactness and high effluent quality. However, membrane fouling, mostly associated to biological products, can reduce MBR performance. Therefore, it is important to monitor MBRs as close to real-time as possible to accelerate control actions for maximal biological and membrane performance. 2D-fluorescence spectroscopy is a promising on-line tool to simultaneously monitor wastewater treatment efficiency and the formation of potential biological fouling agents. In this study, 2D-fluorescence data obtained from the wastewater and the permeate of a MBR was successfully modelled using projection to latent structures (PLS) to monitor variations in the influent and effluent total chemical oxygen demand (COD). Analysis of the results also indicated that humic acids and proteins highly contributed to the measured COD in both streams. Nevertheless, this approach was not valid for other performance parameters of the MBR system (such as influent and effluent ammonia and phosphorus), which is usually characterised through a high number of analytical and operating parameters. Principal component analysis (PCA) was thus used to find possible correlations between these parameters, in an attempt to reduce the analytical effort required for full MBR characterisation and to reduce the time frame necessary to obtain monitoring results. The 3 first principal components, capturing 57% of the variance, indicated and confirmed expected relationships between the assessed parameters. However, this approach alone could not provide robust enough correlations to enable the elimination of parameters for process description (PCA loadings ≤ 0.5). Nevertheless, it is possible that the information captured by 2D-fluorescence spectroscopy could replace some of the analytical and operating parameters, since this technique was able to successfully describe influent and effluent total COD. It is thus proposed that combined modelling of 2D-fluorescence data and selected performance/operating parameters should be further explored for efficient MBR monitoring aiming at rapid process control.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2011.195DOI Listing

Publication Analysis

Top Keywords

2d-fluorescence data
12
influent effluent
12
membrane bioreactors
8
wastewater treatment
8
2d-fluorescence spectroscopy
8
effluent total
8
analytical operating
8
operating parameters
8
parameters
7
mbr
6

Similar Publications

Integration of spectroscopic techniques and machine learning for optimizing Phaeodactylum tricornutum cell and fucoxanthin productivity.

Bioresour Technol

February 2025

iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.

The development of sustainable and controlled microalgae bioprocesses relies on robust and rapid monitoring tools that facilitate continuous process optimization, ensuring high productivity and minimizing response times. In this work, we analyse the influence of medium formulation on the growth and productivity of axenic Phaeodactylum tricornutumcultures and use the resulting data to develop machine learning (ML) models based on spectroscopy. Our culture assays produced a comprehensive dataset of 255 observations, enabling us to train 55 (24+31) robust models that predict cells or fucoxanthin directly from either absorbance or 2D-fluorescence spectroscopy.

View Article and Find Full Text PDF

Online fluorescence monitoring has become a key technology in modern bioprocess development, as it provides in-depth process knowledge at comparably low costs. In particular, the technology is widely established for high-throughput microbioreactor cultivation systems, due to its noninvasive character. For microtiter plates, previously also multi-wavelength 2D fluorescence monitoring was developed.

View Article and Find Full Text PDF

The demand for probiotic bacteria-fermented food products is increasing; however, the monitoring of the fermentation process is still challenging when using conventional approaches. A classical approach requires a large amount of offline data to calibrate a chemometric model using fluorescence spectra. Fluorescence spectra provide a wide range of online information during the process of cultivation, but they require a large amount of offline data (which involves laborious work) for the calibration procedure when using a classical approach.

View Article and Find Full Text PDF

Background: Non-invasive online fluorescence monitoring in high-throughput microbioreactors is a well-established method to accelerate early-stage bioprocess development. Recently, single-wavelength fluorescence monitoring in microtiter plates was extended to measurements of highly resolved 2D fluorescence spectra, by introducing charge-coupled device (CCD) detectors. Although introductory experiments demonstrated a high potential of the new monitoring technology, an assessment of the capabilities and limits for practical applications is yet to be provided.

View Article and Find Full Text PDF

Development and Implementation of MBR Monitoring: Use of 2D Fluorescence Spectroscopy.

Membranes (Basel)

December 2022

LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.

The monitoring of a membrane bioreactor (MBR) requires the assessment of both biological and membrane performance. Additionally, the development of membrane fouling and the requirements for frequent membrane cleaning are still major concerns during MBR operation, requiring tight monitoring and system characterization. Transmembrane pressure is usually monitored online and allows following the evolution of membrane performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!