In this paper, we report a fabrication, characterization and stability study of p-GaN/n-ZnO nanorod heterojunction light-emitting devices (LEDs). The LEDs were assembled from arrays of n-ZnO vertical nanorods epitaxially grown on p-GaN. LEDs showed bright electroluminescence in blue (440 nm), although weaker violet (372 nm) and green-yellow (550 nm) spectral components were also observed. The device characteristics are generally stable and reproducible. The LEDs have a low turn-on voltage (∼5 V). The electroluminescence (EL) is intense enough to be noticed by the naked eye, at an injection current as low as ∼ 40 µA (2.1 × 10(-2) A cm(-2) at 7 V bias). Analysis of the materials, electrical and EL investigations point to the role of a high quality of p-n nano-heterojunction which facilitates a large rectification ratio (320) and a stable reverse current of 2.8 µA (1.4 × 10(-3) A cm(-2) at 5 V). Stability of EL characteristics was investigated in detail. EL intensity showed systematic degradation over a short duration when the LED was bias-stressed at 30 V. At smaller bias (<20 V) LEDs tend to show a stable and repeatable EL characteristic. Thus a simple low temperature solution growth method was successfully exploited to realize nanorod/film heterojunction LED devices with predictable characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/22/24/245202DOI Listing

Publication Analysis

Top Keywords

violet-blue leds
4
leds based
4
based p-gan/n-zno
4
p-gan/n-zno nanorods
4
nanorods stability
4
stability paper
4
paper report
4
report fabrication
4
fabrication characterization
4
characterization stability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!