The purpose of the present study was to investigate whether functional 20S and/or 26S proteasomes are present within mature human red blood cells (RBCs; depleted of reticulocytes and leukocytes). Double-immunofluorescence confocal microscopy showed the presence of immunoreactive 20S and 19S proteasomal subunit proteins and their partial co-localization within mature RBCs. Proteasomes isolated from mature RBCs displayed 20S activity in vitro; atomic-force and transmission electron microscopy of isolated proteasomes revealed abundant 20S core particles and very few 26S particles. A two-dimensional differential in-gel electrophoresis (2D-DIGE) approach was used to determine if proteasome-dependent protein degradation occurs within mature RBCs. Twenty-eight proteins were identified with altered protein content in response to lactacystin. Seven cytosolic proteins showed an increase and 16 showed a decrease; five membrane proteins showed a decrease. We conclude that the proteins showing increased abundance are either primary or secondary targets of the 20S proteasome and that putatively degraded proteins are secondary targets. Therefore, functional 20S proteasomes exist within mature RBCs. Our study did not detect 26S proteasome activity using the 2D-DIGE approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1258/ebm.2011.010394 | DOI Listing |
Animals (Basel)
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, St. Palchevskogo 17, 690041 Vladivostok, Russia.
Studying the blood cell morphology of marine mammals provides an opportunity to elucidate the physiological mechanisms of adaptive changes associated with the aquatic habitat that occur at the cellular level, as well as adaptations to changing environmental conditions and under various physiological and pathological processes. The Baikal seal [ (family Phocidae)] is endemic to the freshwater Lake Baikal, but comprehensive hematology data are not available. We studied the morphological features of blood cells of twelve clinically normal, adult Baikal seals ( = 6 males, = 6 females) from two oceanariums under professional care for eight years.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
B-cell lymphoma/leukemia 11A (BCL11A) is a crucial transcriptional regulator, widely recognized for its role in controlling fetal hemoglobin and its potential as a gene therapy target for inherited hemoglobinopathies. Beyond this, recent studies have also highlighted its key role in the maturation and function of immune cells and erythrocytes, mediated through the regulation of various molecules during hematopoietic development. The dysregulation of BCL11A disrupts downstream molecular pathways, contributing to the development of several hematological malignancies, particularly leukemias.
View Article and Find Full Text PDFSci Rep
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.
View Article and Find Full Text PDFZool Res
January 2025
Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.
Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems, yet their impact on zebrafish ( ) embryonic development, particularly erythropoiesis, remains underexplored. This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos. validation experiments corroborated the transcriptomic findings, revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation, as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.
View Article and Find Full Text PDFFEBS J
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
Intracellular calcium (Ca) is a crucial signaling molecule involved in multiple cellular processes. However, the functional role of Ca in terminal erythropoiesis remains unclear. Here, we uncovered the dynamics of intracellular Ca levels during mouse erythroid development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!