Genetic Parkinson disease (PD) has been associated with mutations in PINK1, a gene encoding a mitochondrial kinase implicated in the regulation of mitochondrial degradation. While the studies so far examined PINK1 function in non-neuronal systems or through PINK1 knockdown approaches, there is an imperative to examine the role of endogenous PINK1 in appropriate human-derived and biologically relevant cell models. Here we report the generation of induced pluripotent stem (iPS) cells from skin fibroblasts taken from three PD patients with nonsense (c.1366C>T; p.Q456X) or missense (c.509T>G; p.V170G) mutations in the PINK1 gene. These cells were differentiated into dopaminergic neurons that upon mitochondrial depolarization showed impaired recruitment of lentivirally expressed Parkin to mitochondria, increased mitochondrial copy number, and upregulation of PGC-1α, an important regulator of mitochondrial biogenesis. Importantly, these alterations were corrected by lentiviral expression of wild-type PINK1 in mutant iPS cell-derived PINK1 neurons. In conclusion, our studies suggest that fibroblasts from genetic PD can be reprogrammed and differentiated into neurons. These neurons exhibit distinct phenotypes that should be amenable to further mechanistic studies in this relevant biological context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3091622PMC
http://dx.doi.org/10.1523/JNEUROSCI.4441-10.2011DOI Listing

Publication Analysis

Top Keywords

pink1
8
induced pluripotent
8
pluripotent stem
8
mutations pink1
8
pink1 gene
8
mitochondrial
6
neurons
5
mitochondrial parkin
4
parkin recruitment
4
recruitment impaired
4

Similar Publications

Lycium barbarum glycopeptide ameliorates aging phenotypes and enhances cardiac metabolism by activating the PINK1/Parkin-mediated mitophagy pathway in D-galactose-induced mice.

Exp Gerontol

January 2025

Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Zhuhai Institute of Jinan University, Zhuhai 519070, China. Electronic address:

Background: Aging is a complex biological process that disrupts tissue structure and impairs physiological function, which contributes to the development of age-related diseases such as cardiovascular disorders. However, effective treatment strategies are lacking.

Objective: To investigate the geroprotective effects of Lycium barbarum glycopeptide (LbGp) and its potential mechanisms in a D-galactose-induced accelerated aging mouse model.

View Article and Find Full Text PDF

Betulinic acid mitigates lipopolysaccharide-induced intestinal injury of weaned piglets through modulation of the mitochondrial quality control.

Int Immunopharmacol

January 2025

Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China. Electronic address:

Intestinal injury of weaned piglets often leads to reduced immunity, diarrhea and growth retardation, resulting in significant economic losses to agriculture. Betulinic acid (BA) is a natural plant-derived active ingredient with multiple pharmacological activities including immune modulation and anti-inflammatory. This study was aimed to investigate the potential mechanism that BA as a feed additive mitigated lipopolysaccharide (LPS)-induced intestinal injury in piglets.

View Article and Find Full Text PDF

Research on the aetiology of neural tube defects (NTDs) has made progress in recent years. However, the molecular mechanism of apolipoproteins underlying NTDs development remains unclear. This study aimed to investigate the function of apolipoprotein M (ApoM) in the pathogenesis of NTDs and its underlying mechanisms.

View Article and Find Full Text PDF

New triterpenoid saponins isolated from the leaves of Astragalus membranaceus (Fisch.) Bge. and their neuroprotective effects.

Bioorg Chem

January 2025

Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China. Electronic address:

Fifteen new triterpenoid saponins designated as huangqiyesaponin A-O (1-15), in addition to eleven previously identified compounds (16-26), were extracted from the leaves of Astragalus membranaceus (Fisch.) Bge. utilizing a 70% ethanol solution.

View Article and Find Full Text PDF

SQYC formula improves the efficacy of PD-1 monoclonal antibodies in MSS colorectal cancer by regulating dendritic cell mitophagy via the PINK1-Parkin pathway.

Phytomedicine

January 2025

Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Nanjing, 210028, China. Electronic address:

Background: Microsatellite stable (MSS) colorectal carcinomas (CRCs) exhibit poor responsiveness to immunotherapy such as immune checkpoint inhibitors (ICIs). In the realm of clinical cancer treatment, traditional Chinese medicines (TCMs) are extensively utilized for their immunomodulatory properties. Shen Qi Yi Chang (SQYC), a clinical prescription for CRC treatment, improve the life quality of CRC patients and enhance their immune function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!