GABAA inhibition controls response gain in visual cortex.

J Neurosci

UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom.

Published: April 2011

GABA(A) inhibition is thought to play multiple roles in sensory cortex, such as controlling responsiveness and sensitivity, sharpening selectivity, and mediating competitive interactions. To test these proposals, we recorded in cat primary visual cortex (V1) after local iontophoresis of gabazine, the selective GABA(A) antagonist. Gabazine increased responsiveness by as much as 300%. It slightly decreased selectivity for stimulus orientation and direction, often by raising responses to all orientations. Strikingly, gabazine affected neither contrast sensitivity nor cross-orientation suppression, the competition seen when stimuli of different orientation are superimposed. These results were captured by a simple model in which GABA(A) inhibition has the same selectivity as excitation and keeps responses to unwanted stimuli below threshold. We conclude that GABA(A) inhibition in V1 helps enhance stimulus selectivity but is not responsible for competition among superimposed stimuli. It controls the sensitivity of V1 neurons by adjusting their response gain, without affecting their input gain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083851PMC
http://dx.doi.org/10.1523/JNEUROSCI.5753-10.2011DOI Listing

Publication Analysis

Top Keywords

gabaa inhibition
16
response gain
8
visual cortex
8
gabaa
5
inhibition controls
4
controls response
4
gain visual
4
cortex gabaa
4
inhibition thought
4
thought play
4

Similar Publications

Background: How tauopathy disrupts direct entorhinal cortex (EC) inputs to CA1 and their plasticity is understudied, despite its critical role in memory. Moreover, dysfunction of lateral EC (LEC) input is less clear, despite its relevance to early Alzheimer's disease pathogenesis. Here we examined how tau impacts long-term potentiation (LTP) of LEC→CA1 input in a transgenic model of tauopathy.

View Article and Find Full Text PDF

Gene Deficiency of δ Subunit-Containing GABA Receptor in mPFC Lead Learning and Memory Impairment in Mice.

Neurochem Res

January 2025

Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.

View Article and Find Full Text PDF

Aims: N-Demethylsinomenine (NDSM) demonstrates good analgesic efficacy in preclinical pain models. However, how NDSM exerts analgesic actions remains unknown.

Methods: We examined the analgesic effects of NDSM using both pain-evoked and pain-suppressed behavioral assays in two persistent pain models.

View Article and Find Full Text PDF

Abdominal aortic aneurysm is a potentially fatal vascular inflammatory disease characterized by infiltration of various inflammatory cells.The GABA-A receptor is expressed in many inflammatory cells such as macrophages and T cells and has anti-inflammatory and antioxidant effects. Therefore, the GABA-A receptor may become a potential therapeutic target for abdominal aortic aneurysms.

View Article and Find Full Text PDF

Treatment for major depressive disorder (depression) often has partial efficacy and a large portion of patients are treatment resistant. Recent studies implicate reduced somatostatin (SST) interneuron inhibition in depression, and new pharmacology boosting this inhibition via positive allosteric modulators of α5-GABAA receptors (α5-PAM) offers a promising effective treatment. However, testing the effect of α5-PAM on human brain activity is limited, meriting the use of detailed simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!