Context: A close association between insulin resistance and reduced skeletal muscle oxidative capacity has been reported in adult offspring of people with type 2 diabetes (T2D), prompting a hypothesis that insulin resistance may result from mitochondrial dysfunction or vice versa.

Objective: We determined whether 9 d of intensive exercise training ameliorates the mitochondrial dysfunction and insulin resistance in offspring of T2D.

Methods: We compared the response to 9 d of intensive exercise training in eight (seven females, one male) healthy adult offspring of mothers with T2D with eight (six females, two males) nondiabetic controls. Skeletal muscle mitochondrial ATP production was assessed using a luciferase-based assay, and insulin sensitivity was measured using hyperinsulinemic-euglycemic clamps.

Results: Short-term intensive training increased skeletal muscle mitochondrial ATP production and citrate synthase activity similarly in both groups (P < 0.01). In contrast, whereas short-term intensive training reduced the fasting glucose (~5%, P = 0.035) and insulin levels (~40%, P = 0.011) as well as increased the glucose infusion rate during the hyperinsulinemic-euglycemic clamp (~50%, P = 0.028) among controls, no changes in these parameters were observed among offspring except for an increase in fasting glucose (~7%, P = 0.004).

Conclusion: A short-term intensive exercise training program was equally effective at increasing skeletal muscle oxidative capacity in nondiabetic people and in the offspring of mothers with diabetes. In contrast, the exercise improved insulin sensitivity only in nondiabetic people but not in the offspring of T2D mothers, revealing dissociation between improvements in skeletal muscle mitochondrial function and insulin sensitivity. The exercise effect on mitochondrial function and insulin sensitivity seems to be mediated by different regulatory pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417164PMC
http://dx.doi.org/10.1210/jc.2010-2863DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
intensive exercise
16
exercise training
16
insulin sensitivity
16
mitochondrial function
12
function insulin
12
adult offspring
12
offspring mothers
12
insulin resistance
12
muscle mitochondrial
12

Similar Publications

Body composition abnormalities are prognostic markers in several types of cancer, including colorectal cancer (CRC). Using our data distribution on body composition assessments and classifications could improve clinical evaluations and support population-specific opportune interventions. This study aimed to evaluate the distribution of body composition from computed tomography and assess the associations with overall survival among patients with CRC.

View Article and Find Full Text PDF

Probing regional glycogen metabolism in humans non-invasively has been challenging due to a lack of sensitive approaches. Here we studied human muscle glycogen dynamics post-exercise with a spatial resolution of millimeters and temporal resolution of minutes, using relayed nuclear Overhauser effect (glycoNOE) MRI. Data at 5T showed a homogeneous distribution of glycogen in resting muscle, with an average concentration of 99 ± 13 mM.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Background: Mycotoxins are considered one of the most important problems and threats that face poultry producers.

Aim: This study was conducted to investigate the pathological, hematological, and biochemical alterations in chickens fed on mycotoxins contamination ration.

Methods: 434 feed samples were collected from poultry farms operating in Babil Governorate/Iraq, where feed samples were collected over the course of 2023, and these samples were tested by direct competitive enzyme-linked immunosorbent assay to determine the level of mycotoxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!