Obesity, defined as the excess development of adipose tissue, is an important risk factor for metabolic and cardiovascular diseases such as type 2 diabetes, hypertension and atherosclerosis. Over the past few years, metabolic inflammation has emerged as a major process underlying the link between obesity and its associated pathologies. Adipose tissue appears to play a primary and crucial role as a source and site of inflammation. Accumulation of immune cells within adipose tissue occurs in obese conditions. The present review focuses on the relationship between adipose tissue and immune cells, including macrophages, dendritic cells, T and B lymphocytes, and natural killer cells, in both the physiological state and under obese conditions. The factors involved in the accumulation of both myeloid and lymphoid cells in adipose tissue are also described. In addition, the role of adipose-tissue immune cells on adipocyte metabolism and cells of the adipose tissue stromal-vascular fraction are discussed, with particular emphasis on the cross-talk between macrophages and adipocytes, together with recent reports of T lymphocytes in adipose tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diabet.2011.03.002 | DOI Listing |
J Crohns Colitis
January 2025
Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Background And Aim: Creeping fat (CF) in Crohn's disease (CD) is characterized by hyperplastic mesenteric adipose tissue (MAT) encasing fibrotic intestinal segments. CF exhibits disruptions in microbiota and lipid metabolism, particularly in lysophospholipids (LPC). This study aims to elucidate the impact of LPC on adipogenic differentiation of mesenchymal stem cells in CF and its effects on immune defense functions in the differentiated adipocytes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
Global health is increasingly challenged by the growing prevalence of obesity and its associated complications. Quercetin, one of the most important dietary flavonoids, is being explored as an effective therapy for obesity with its mechanism remains understudied. Here in this study, it is demonstrated that quercetin intervention significantly reverses obesity-related phenotypes through reshaping the overall structure of microbiota, especially boosting colonization of the beneficial gut commensal Akkermansia muciniphila (A.
View Article and Find Full Text PDFJ Physiol
January 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
Cardiovascular disease affects millions of people worldwide and often presents with other conditions including metabolic, renal and neurological disorders. A variety of secreted factors from multiple organs/tissues (proteins, nucleic acids and lipids) have been implicated in facilitating organ cross-talk that may contribute to the development of multimorbidity. Secreted proteins have received the most attention, with the greatest body of research related to factors released from adipose tissue (adipokines), followed by skeletal muscle (myokines).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA.
Most patients with lung cancer experience cancer cachexia (CC), a syndrome of skeletal muscle and adipose tissue wasting. Knowledge of body composition changes in patients is limited, however, because most studies have been cross-sectional, comparing patients with non-cancer controls or patients with and without CC. Few studies, in contrast, have evaluated body composition in patients with lung cancer over time.
View Article and Find Full Text PDFBiofactors
January 2025
Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France.
Inflammation of adipose tissue is a contributing factor to many chronic diseases associated with obesity. We previously showed that micronutrients such as vitamin D (VD) limited this metabolic inflammation by decreasing inflammatory markers expression including miR-155 (microRNA-155) or miR-146a in different in vitro and in vivo models. These miRNAs could be incorporated into extracellular vesicles (EVs) in order to modulate the activity of target cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!