Second international workshop for glycosylation defects in muscular dystrophies, 11-12 November, 2010, Charlotte, USA.

Brain Pathol

McColl-Lockwood Laboratory for Muscular Dystrophy Research, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA.

Published: November 2011

The second International Workshop for Glycosylation Defects in Muscular Dystrophies took place on November 11 and 12, 2010 in Charlotte, North Carolina, USA. The meeting was hosted by the Carolinas Medical Center with financial support from the Carolinas Muscular Dystrophy Research Endowment at the Carolinas HealthCare Foundation, the Muscular Dystrophy Association and funds raised by the "Jeans, Genes & Geniuses" event organized by Jane and Luther Lockwood. Since conducting the first workshop in May 2008, significant progress has been made in a subset of muscular dystrophies associated with defects in alpha-dystroglycan (α-DG) glycosylation. New findings on α-DG glycosylation and creation of novel animal models have expanded our understanding of the disease mechanism. The 2010 workshop focused on the following topics; (i) functional glycosylation of α-DG; (ii) animal models; and (iii) novel experimental therapies. The workshop brought together a total of 22 internationally renowned scientists and clinicians from US, UK, Denmark and Japan with active research and expertise in these areas. Overall, the workshop provided a unique opportunity to discuss the significance of recent progress, facilitate international collaboration, and identify new approaches to treat the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094049PMC
http://dx.doi.org/10.1111/j.1750-3639.2011.00494.xDOI Listing

Publication Analysis

Top Keywords

muscular dystrophies
12
second international
8
international workshop
8
workshop glycosylation
8
glycosylation defects
8
defects muscular
8
november 2010
8
2010 charlotte
8
muscular dystrophy
8
α-dg glycosylation
8

Similar Publications

Congenital muscular dystrophies and myopathies: the leading cause of genetic muscular disorders in eleven Chinese families.

BMC Musculoskelet Disord

January 2025

Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.

Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.

Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.

View Article and Find Full Text PDF

Child Neurology: Severe -Related Congenital Muscular Dystrophy With Rapidly Progressive Encephalopathy Leading to Infantile Death.

Neurology

February 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada.

Pathogenic variants in cause congenital muscular dystrophy through hypoglycosylation of alpha-dystroglycan (OMIM #615350). The established phenotypic spectrum of GMPPB-related disorders includes recurrent rhabdomyolysis, limb-girdle muscular dystrophy, neuromuscular transmission abnormalities, and congenital muscular dystrophy with variable brain and eye anomalies. We report a 9-month-old male infant with congenital muscular dystrophy, infantile spasms, and compound heterozygous pathogenic variants (c.

View Article and Find Full Text PDF

For individuals with Duchenne or Becker muscular dystrophy (DMD and BMD, respectively), transitioning to adulthood presents significant challenges. Although considerable attention has been given to facilitating medical transitions due to the complexity of these conditions, less focus has been placed on other aspects of the transition, such as achieving independence. This study assessed the transition needs of people with DMD or BMD, exploring various domains including health, education, employment, living arrangements, transportation, daily activities, and independent personal life.

View Article and Find Full Text PDF

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!