A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes. | LitMetric

Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes.

Br J Pharmacol

REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.

Published: February 2012

Background And Purpose: 3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects.

Experimental Approach: Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC).

Key Results: 5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H(2) O(2 ) production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H(2) O(2) generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds' pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model.

Conclusions And Implications: MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346242PMC
http://dx.doi.org/10.1111/j.1476-5381.2011.01453.xDOI Listing

Publication Analysis

Top Keywords

mdma metabolites
16
pro-oxidant effects
12
dopamine l-dopa
12
mouse brain
8
brain synaptosomes
8
neurotoxic effects
8
effects mdma
8
metabolism dopamine
8
5-ht dopamine
8
l-dopa dopac
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!