IFN-α as a vaccine adjuvant: recent insights into the mechanisms and perspectives for its clinical use.

Expert Rev Vaccines

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.

Published: April 2011

The IFN-α family are pleiotropic cytokines with the longest record of clinical use. Over the last decade, new biological effects of IFN-α on immune cells, including dendritic cells, have been described, supporting the concept that these cytokines can act as effective vaccine adjuvants. Recently, an important advance in our understanding of the mechanisms of interferon adjuvant activity has been achieved. Some clinical studies have been performed to assess the adjuvant activity in individuals immunized with preventive vaccines, showing variable results depending on interferon/vaccine formulation and vaccinated subjects. In spite of many data in animal models, little information is available on the possible advantage of utilizing IFN-α as an adjuvant for cancer vaccines in humans. Further clinical trials specifically designed to explore vaccine adjuvant activity are needed in order to define the best conditions for using IFN-α or IFN-α-conditioned dendritic cells for the development of therapeutic vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1586/erv.11.9DOI Listing

Publication Analysis

Top Keywords

adjuvant activity
12
vaccine adjuvant
8
dendritic cells
8
ifn-α
5
adjuvant
5
ifn-α vaccine
4
adjuvant insights
4
insights mechanisms
4
mechanisms perspectives
4
clinical
4

Similar Publications

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.

View Article and Find Full Text PDF

Our previous study highlighted the anticancer potential of sea hare hydrolysate (SHH), particularly its role in regulating macrophage polarization and inducing pyroptotic death in lung cancer cells through the inhibition of signal transducer and activator of transcription 3 (STAT3). These findings prompted us to investigate additional features of immune-oncology (I-O) agents or adjuvants, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition and their association with rheumatoid arthritis (RA) risk, to explore the potential of SHH as an I-O agent or adjuvant. In this study, we investigated the effects of SHH on PD-L1 levels in various cancer cell types and assessed its effectiveness in treating RA, a common side effect of I-O agents.

View Article and Find Full Text PDF

Background Clinicians use prognostic biomarker/multi-gene-based tests for predicting recurrence in hormone receptor-positive/HER2-negative (HR+/HER2-) early-stage breast cancer (EBC). CanAssist Beast (CAB) uses the expression of five protein biomarkers in combination with tumor-specific parameters such as tumor size, histopathological grade, and lymph node status to predict the risk of distant recurrence within five years of diagnosis for patients with HR+/HER2-, EBC. The current study aimed to evaluate the impact of prognostic tests on adjuvant chemotherapy decisions by assessing the agreement between clinical and CAB risk stratification as low-risk (LR) or high-risk (HR) for distant recurrence.

View Article and Find Full Text PDF

A 67-year-old woman was diagnosed with ileocecal cancer presenting with intestinal obstruction. She underwent an ileocecal resection and D3 lymph node dissection. Pathological diagnosis showed a moderately differentiated adenocarcinoma, pT4aN0M0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!