Liquid crystalline (LC) platinum(II) complexes with 1,2-thiophenolato and 1,2-benzendithiolato have been newly synthesized and investigated by spectroscopy together with the catecholato analogue. The variations in coordinating atoms (O or S or O/S mixed) lead to significant modulation in electrochemical properties in solution and absorption and emission properties of the complexes both in solution media and in the condensed phases. The asymmetric, polar mesogens/chromophores consisting of Pt(II), redox-active ligands, and alkyl-substituted bipyridine commonly play important roles not only in stabilizing the columnar LC phases, but also in fluctuations of the ground state energies. A key finding of the present work is the chromic properties of LC complexes induced by the interplay of self-association of the mesogens/chromophores and their fluctuating properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic102123nDOI Listing

Publication Analysis

Top Keywords

liquid crystalline
8
properties complexes
8
chromic behaviors
4
behaviors hexagonal
4
hexagonal columnar
4
columnar liquid
4
crystalline platinum
4
complexes
4
platinum complexes
4
complexes catecholato
4

Similar Publications

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

Circularly Polarized Room-Temperature Phosphorescence from Dye-Doped Cholesteric Liquid Crystalline Polymer Networks.

J Phys Chem Lett

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Circularly polarized luminescence (CPL) materials have drawn increasing attention for their potential applications in optical displays and chemo/biosensing. Nevertheless, the construction of circularly polarized room-temperature phosphorescence (CPRTP) materials is still a significant challenge. In this work, four liquid crystalline polymer network films with RTP properties have been fabricated via photopolymerization of cholesteric liquid-crystalline mixtures containing different amounts of commercially available dyes.

View Article and Find Full Text PDF

Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).

View Article and Find Full Text PDF

Advances and challenges in green extraction of chitin for food and agriculture applications: A review.

Int J Biol Macromol

January 2025

Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States. Electronic address:

Chitin, the second most abundant polysaccharide in nature, offers numerous practical applications due to its versatile functional properties. However, its utilization is constrained by significant challenges in extraction, as well as low solubility and high crystallinity. While traditional chemical and biological fermentation methods can achieve high-purity chitin, these processes are often environmentally harmful or time/energy-consuming.

View Article and Find Full Text PDF

The Properties of Damaged Starch Granules: The Relationship Between Granule Structure and Water-Starch Polymer Interactions.

Foods

December 2024

Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.

The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!