Ultraviolet-B (UV-B) radiation generates an oxidative stress in plant cells due to excessive generation of reactive oxygen species (ROS). ROS can denature enzymes and damage important cellular components. In the present study, an important medicinal plant Acorus calamus (Sweet flag) was subjected to two doses of supplemental UV-B radiation (sUV-B): sUV1 (+ 1.8 kJ m(-2) d(-1)) and sUV2 (+3.6 kJ m(-2) d(-1)) to evaluate the relative response of antioxidant defense potential. Stimulation of activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) was observed at initial growth period while the activities of CAT and SOD decreased at later age of sampling. sUV-B induced lipid peroxidation (LPO) was observed showing alteration of membrane properties. No definite trend of change was observed for ascorbic acid (AsA), while increments in thiol, proline, phenol and protein contents were observed due to sUV-B. Results suggested that sUV-B radiation may stimulate the enzymatic and non-enzymatic defense system of Acorus plants, showing its better adaptation at lower dose of sUV-B.
Download full-text PDF |
Source |
---|
Nutrients
December 2024
Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Faculty of Medicine, Sasinkova 2, 811 08 Bratislava, Slovakia.
Background: Aging induces degenerative processes in the body, contributing to the onset of various age-associated diseases that affect the population. Inadequate dietary habits and low physical activity are major contributors to increased morbidity during aging. This study aimed to investigate the combined effects of omega-3 fatty acid supplementation and physical activity on the markers of oxidative stress and antioxidant defense mechanisms in aged male Wistar rats (23-24 months).
View Article and Find Full Text PDFNutrients
December 2024
Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia.
: Following previous findings on high-salt (HS)-intake-related increase of oxidative stress, this study explored whether carnosine (CAR; β-alanyl-L-histidine), a reactive oxygen species (ROS) scavenger, enhanced antioxidative defence and vascular function following HS, potentially via the NRF2 or HIF-1α signalling pathway. : Sprague Dawley rats (64, 8-10 weeks old, both sexes) were divided into four groups (n = 6/group): CTRL (0.4% NaCl), HS (4% NaCl for 7 days), CTRL + CAR (0.
View Article and Find Full Text PDFFoods
December 2024
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Carbon monoxide (CO) is recognized as a signaling molecule in plants, inducing various physiological responses. This article briefly examines the physiological functions of CO in seed biology and seedlings' responses to environmental stresses. The activity of heme oxygenase (HO), the main enzyme responsible for CO synthesis, is a key factor controlling CO levels in plant cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!