AI Article Synopsis

  • Researchers have developed two pyrene-based zinc complexes that act as selective receptors for ATP and ADP using fluorescence and NMR techniques.
  • The first compound creates a unique assembly with ATP or ADP, increasing fluorescence intensity, while other nucleoside triphosphates do not form this assembly, demonstrating its selectivity.
  • The second compound shows different fluorescence responses: excimer emission for ATP and enhanced monomer fluorescence for ADP, making it an effective sensor to distinguish between the two.

Article Abstract

It is still a challenging task to discriminate adenosine-5'-triphosphate (ATP) from various nucleoside triphosphates, such as GTP, CTP, UTP, and TTP. The ability to distinguish ATP from adenosine diphosphate (ADP) by fluorescent signals is also urgently desired. Herein, we report two pyrene-based zinc complexes as nucleoside polyphosphate receptors with high selectivity for ATP and ADP based on fluorescence and NMR studies. A unique pyrene-adenine-pyrene sandwich assembly was observed in the case of compound 1 with ATP or ADP, resulting in the increase of monomer fluorescence intensity; whereas the other bases of nucleoside triphosphates, such as GTP, CTP, UTP, and TTP were not sandwiched, resulting in a switch in the monomer-excimer fluorescence of pyrene. The different binding patterns of various nucleobases with a pyrene-pyrene assembly make 1 a highly selective fluorescent sensor for ANP (N=di, tri). In the case of compound 2, the first 0.5 equivalents of ATP induced a strong excimer emission, whilst ADP induced a large enhancement in the monomeric fluorescent peak. This fluorescence change makes 2 an efficient sensor to discriminate ATP from ADP.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201100120DOI Listing

Publication Analysis

Top Keywords

atp adp
16
adp based
8
sandwich assembly
8
nucleoside triphosphates
8
triphosphates gtp
8
gtp ctp
8
ctp utp
8
utp ttp
8
case compound
8
atp
7

Similar Publications

Here we present the first use of principal component analysis of the full spectrum of a single europium complex to differentiate between structurally-similar analytes. We demonstrate that it can be used to distinguish between the nucleoside phosphate guests AMP, ADP, and ATP.

View Article and Find Full Text PDF

Chemoresistance is an important factor in multiple myeloma (MM) relapse and overall survival. However, the mechanism underlying resistance remains unclear. In this study, we identified adenine nucleotide translocase 3 (ANT3) as a novel biomarker and therapeutic target for MM progression and resistance to the proteasome inhibitor bortezomib (BTZ).

View Article and Find Full Text PDF

Relationship Between Mitochondrial Biological Function and Breast Cancer: An Approach Based on Mendelian Randomization Analysis.

Breast J

January 2025

Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

This study aims to investigate the potential causal link between mitochondrial function and breast cancer using the Mendelian randomization (MR) analysis. The data used for this study were obtained from genomewide association studies (GWAS) databases on mitochondrial biological function and breast cancer. Mitochondrial function was considered the exposure variable, breast cancer the outcome variable, and specific single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs).

View Article and Find Full Text PDF

Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose.

View Article and Find Full Text PDF

We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!