Self-assembling ligands for multivalent nanoscale heparin binding.

Angew Chem Int Ed Engl

Department of Chemistry, University of York, Heslington, UK.

Published: May 2011

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201100019DOI Listing

Publication Analysis

Top Keywords

self-assembling ligands
4
ligands multivalent
4
multivalent nanoscale
4
nanoscale heparin
4
heparin binding
4
self-assembling
1
multivalent
1
nanoscale
1
heparin
1
binding
1

Similar Publications

The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.

View Article and Find Full Text PDF

The ability to add bioactivities, such as cell signaling or ligand recognition, to biomaterials has generated the potential to include multiple bioactivities into a single material. In some cases, it is desirable to localize these activities to different areas of the biomaterial, creating functional patterns. While photolithography and 3D printing have been effective techniques for patterning functions in many materials, patterning remains a challenge in materials composed of protein, in part due to how these materials are artificially assembled.

View Article and Find Full Text PDF

Charge-dependent hierarchical self-assembling of fluorinated gold nanoclusters.

Chem Commun (Camb)

December 2024

Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan.

Au(SR) nanoclusters decorated with semifluorinated thiolate ligands (SFLs) self-assemble hierarchically depending on the charge state of the nanocluster component; the use of the anionic cluster ([Au]) resulted in the generation of nanofibers, whereas the neutral counterpart ([Au]) gave micron-sized filaments as a result of the bundling/twisting of the nanofibers.

View Article and Find Full Text PDF

From Frustration to Order: Role of Fluid-Fluid Interfaces in Precision Assembly of Nanoparticles.

Langmuir

December 2024

Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.

Fluid-fluid interfaces are an attractive platform for self-assembling nanoparticles into low-dimensional materials. In this Perspective, we review recent developments in the use of interfaces to direct the assembly of spherical and anisotropic nanoparticles into diverse and sophisticated architectures. We illustrate how nanoparticle clusters, strings, networks, superlattices, chiral lattices, and quasicrystals can be self-assembled by harnessing the frustration between interfacial and interparticle forces.

View Article and Find Full Text PDF

Porous MOFs with geometric mismatch between trimers and octatopic pyrene-based ligands for low-temperature methane storage.

Chem Commun (Camb)

December 2024

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China.

Natural gas is recognized as a transitional clean energy fuel to address a variety of environmental problems. Identifying porous adsorbents with high-capacity low-temperature methane adsorption performances is crucial for advancing next-generation technologies for efficiently utilizing boil-off gas, inevitablely generated from liquefied natural gas systems. Herein, we synthesized highly porous metal-organic frameworks (MOFs)-TBPP-MOFs with a geometric mismatch strategy by combining seemingly incompatible trinuclear clusters with octatopic pyrene-based ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!