β-Catenin is a key protein in the canonical Wnt signaling pathway and in many cancers alterations in transcriptional activity of its components are observed. This pathway is up-regulated by the protein kinase CK2, but the underlying mechanism of this change is unknown. It has been demonstrated that CK2 hyperactivates AKT/PKB by phosphorylation at Ser129, and AKT phosphorylates β-catenin at Ser552, which in turn, promotes its nuclear localization and transcriptional activity. However, the consequences of CK2-dependent hyperactivation of AKT on β-catenin activity and cell viability have not been evaluated. We assessed this regulatory process by manipulating the activity of CK2 and AKT through overexpression of wild-type, constitutively active and dominant negative forms of these proteins as well as analyzing β-catenin-dependent transcriptional activity, survivin expression and viability in HEK-293T cells. We observed that CK2α overexpression up-regulated the β-catenin transcriptional activity, which correlated to an increased nuclear localization of β-catenin as well as survivin expression. Importantly, these effects were strongly reversed when an AKT-S129A mutant was co-expressed in the same cells, followed by a significant decrease in cell viability but no changes in β-catenin stability. Taken together, the data suggest that the CK2α-dependent up-regulation of β-catenin activity requires phosphorylation of AKT in human embryonic kidney cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.22527 | DOI Listing |
J Clin Invest
January 2025
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, United States of America.
Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.
View Article and Find Full Text PDFJ Psychosoc Oncol
January 2025
University of Minnesota Medical School, Minneapolis, MN, USA.
Background/purpose: Immunotherapies, such as CAR-T, have revolutionized cancer treatment for some cancers. However, these treatments often require active participation of a family member or friend to act as a caregiver at home for several weeks after infusion. Given the novelty of CAR-T, there is a need to better understand the experience of patients receiving these treatments and their caregivers.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
April 2024
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
Engineering microbial cell factories has been widely used to produce a variety of chemicals, including natural products, biofuels, and bulk chemicals. However, poor robustness limits microbial production on an industrial scale. Microbial robustness is essential to ensure reliable and sustainable production of targeted chemicals.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.
Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!