Aims And Objectives: Proliferation in transformed β-cell lines is high compared to primary islet cells and is accompanied by reduced insulin content and release. Our aim was to determine whether experimental reduction of proliferation restores the cells to a more authentic β-cell phenotype in terms of secretory function and to investigate the potential beneficial effect of their configuration as islet-like structures.

Results: Mitosis inhibitor mitomycin c treatment neither altered the rate of proliferation nor improved the secretory responses of MIN6 monolayer cells. The proliferative rate of MIN6 cells was not affected by pseudoislet formation, but in contrast to monolayer cells, pseudoislets responded to 20 mM glucose with a 2.6-fold increase in insulin secretion. MMC reduced proliferation in MIN6 pseudoislets, but did not further improve their secretory responsiveness. Withdrawal of doxycycline resulted in complete growth-arrest in R7T1 cells, but monolayer and pseudoislet R7T1 cells were unresponsive to glucose and remained so upon growth-arrest although insulin content was increased in growth-arrested pseudoislets.

Methods: MIN6 monolayer and pseudoislet cells were treated with MMC whereas growth-arrest was induced in R7T1 monolayer and pseudoislet cells by withdrawal of doxycycline. Proliferation rates were determined by immunocytochemical measurements of BrdU incorporation and insulin secretion was assessed by radioimmunoassay.

Conclusions: Secretory function of transformed β-cells is not influenced by experimental reduction of proliferation, but can be modulated by enhanced cell-cell contact within islet-like structures. These results have implications for future studies of islet cell redifferentiation and for the generation of islet-like material for transplantation therapy in Type 1 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.4161/isl.3.3.15428DOI Listing

Publication Analysis

Top Keywords

secretory function
12
monolayer pseudoislet
12
cells
9
function transformed
8
transformed β-cell
8
β-cell lines
8
insulin content
8
experimental reduction
8
reduction proliferation
8
min6 monolayer
8

Similar Publications

Host hepatocyte senescence determines the success of hepatocyte transplantation in a mouse model of liver injury.

J Hepatol

January 2025

Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:

Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

Lung cancer treatment is evolving, and the role of senescent macrophages in tumor immune evasion has become a key focus. This study explores how senescent macrophages interact with lung cancer cells, contributing to tumor progression and immune dysfunction. As aging impairs macrophage functions, including phagocytosis and metabolic signaling, it promotes chronic inflammation and cancer development.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Neurosciences, University of Barcelona, Barcelona, Catalunya, Spain.

Background: Senescence is a cellular response to stress or damage leading to a state of irreversible growth arrest. As we age, the number of senescent cells increases and directly contributes to age-related conditions including cancer and neurodegenerative diseases. As a result, there is a growing interest to therapeutically target senescence either with drugs eliminating senescent cells (senolytics) or with strategies to modulate their secretory phenotype among others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!