AI Article Synopsis

Article Abstract

Epidemiological studies have associated low circulating levels of the adipokine adiponectin with multiple metabolic disorders, including metabolic syndrome, obesity, insulin resistance, type II diabetes, and cardiovascular disease. Recently, we reported that adiponectin selectively overexpressed in mouse macrophages can improve insulin sensitivity and protect against inflammation and atherosclerosis. To further investigate the role of adiponectin and macrophages on lipid and lipometabolism in vivo, we engineered the expression of adiponectin in mouse macrophages (Ad-TG mice) and examined effects on plasma lipoproteins and on the expression levels of genes involved in lipoprotein metabolism in tissues. Compared with the wild-type (WT) mice, Ad-TG mice exhibited significantly lower levels of plasma total cholesterol (-21%, P < 0.05) due to significantly decreased LDL (-34%, P < 0.05) and VLDL (-32%, P < 0.05) cholesterol concentrations together with a significant increase in HDL cholesterol (+41%, P < 0.05). Further studies investigating potential mechanisms responsible for the change in lipoprotein cholesterol profile revealed that adiponectin-producing macrophages altered expression of key genes in liver tissue, including apoA1, apoB, apoE, the LDL receptor, (P < 0.05), and ATP-binding cassette G1 (P < 0.01). In addition, Ad-TG mice also exhibited higher total and high-molecular-weight adipnection levels in plasma and increased expression of the anti-inflammatory cytokine IL-10 as well as a decrease in the proinflammatory cytokine IL-6 in adipose tissue. These results indicate that macrophages engineered to produce adiponectin can influence in vivo gene expression in adipose tissue in a manner that reduces inflammation and macrophage infiltration and in liver tissue in a manner that alters the circulating lipoprotein profile, resulting in a decrease in VLDL and LDL and an increase in HDL cholesterol. The data support further study addressing the use of genetically manipulated macrophages as a novel therapeutic approach for treatment of cardiometabolic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129839PMC
http://dx.doi.org/10.1152/ajpendo.00614.2010DOI Listing

Publication Analysis

Top Keywords

ad-tg mice
12
mouse macrophages
8
mice exhibited
8
levels plasma
8
increase hdl
8
hdl cholesterol
8
liver tissue
8
adipose tissue
8
tissue manner
8
adiponectin
6

Similar Publications

Oxidative stress and disturbances of mitochondrial function in the brain play a crucial role in Alzheimer's disease (AD). However, little is known about the dynamics of these changes in different parts of the brain at the early stage of AD. This study aimed to determine the expression of genes encoding superoxide dismutases (SOD1, SOD2), poly(ADP-ribose) polymerases (PARPs) and sirtuins (SIRTs).

View Article and Find Full Text PDF

The main challenge in the "post-GWAS" era is to determine the functional meaning of genetic variants and their contribution to disease pathogenesis. Development of suitable mouse models is critical because disease susceptibility is triggered by complex interactions between genetic, epigenetic, and environmental factors that cannot be modeled by in vitro models. Thyroglobulin (TG) is a key gene for autoimmune thyroid disease (AITD) and several single nucleotide polymorphisms (SNPs) in the TG coding region have been associated with AITD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is the most common cause of dementia worldwide. Recent genome-wide association studies (GWAS) identified TREM2 (triggering receptor expressed on myeloid cells 2) as one of the major risk factors for AD. TREM2 is a surface receptor expressed on microglia and largely mediates microglial functions and immune homeostasis in the brain.

View Article and Find Full Text PDF

Tripterygium glycosides (TG) have been reported to ameliorate Alzheimer's disease (AD), although the mechanism involved remains to be determined. In the present study, the lncRNA and circRNA expression profiles of an AD mouse model treated with TG were assessed using microarrays. lncRNAs, mRNAs, and circRNAs in the hippocampi of 3 AD+normal saline (NS) mice and 3 AD+TG mice were detected using microarrays.

View Article and Find Full Text PDF

Quantitative microglia morphological features correlate with diffusion MRI in 2-month-old 3xTg-AD mice.

Magn Reson Imaging

November 2023

Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.

Microglia (MØ) morphologies are closely related to their functional state and have a central role in the maintenance of brain homeostasis. It is well known that inflammation contributes to neurodegeneration at later stages of Alzheimer's Disease, but it is not clear which role MØ-mediated inflammation may play earlier in the disease pathogenesis. We have previously reported that diffusion MRI (dMRI) is able to detect early myelin abnormalities present in 2-month-old 3xTg-AD (TG) mice; since MØ actively participate in regulating myelination, the goal of this study was to assess quantitatively MØ morphological characteristics and its association with dMRI metrics patterns in 2-month-old 3xTg-AD mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!