A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly. | LitMetric

The aim of this study was to test the hypotheses that 1) skeletal muscles of elderly subjects can adapt to a single endurance exercise bout and 2) endurance trained elderly subjects have higher expression/activity of oxidative and angiogenic proteins in skeletal muscle than untrained elderly people. To investigate this, lifelong endurance trained elderly (ET; n = 8) aged 71.3 ± 3.4 years and untrained elderly subjects (UT; n = 7) aged 71.3 ± 4 years, performed a cycling exercise bout at 75% VO(2max) with vastus lateralis muscle biopsies obtained before (Pre), immediately after exercise (0 h) and at 2 h of recovery. Capillarization was detected histochemically and oxidative enzyme activities were determined on isolated mitochondria. GLUT4, HKII, Cyt c and VEGF protein expression was measured on muscle lysates from Pre-biopsies, phosphorylation of AMPK and P38 on lysates from Pre and 0 h biopsies, while PGC-1α, VEGF, HKII and TFAM mRNA content was determined at all time points. ET had ~40% higher PDH, CS, SDH, α-KG-DH and ATP synthase activities and 27% higher capillarization than UT, reflecting increased skeletal muscle oxidative capacity with lifelong endurance exercise training. In addition, acute exercise increased in UT PGC-1α mRNA 11-fold and VEGF mRNA 4-fold at 2 h of recovery, and AMPK phosphorylation ~5-fold immediately after exercise, relative to Pre, indicating an ability to adapt metabolically and angiogenically to endurance exercise. However, in ET PGC-1α mRNA only increased 5 fold and AMPK phosphorylation ~2-fold, while VEGF mRNA remained unchanged after the acute exercise bout. P38 increased similarly in ET and UT after exercise. In conclusion, the present findings suggest that lifelong endurance exercise training ensures an improved oxidative capacity of skeletal muscle, and that skeletal muscle of elderly subjects maintains the ability to respond to acute endurance exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2011.03.004DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
endurance exercise
20
elderly subjects
16
exercise bout
12
lifelong endurance
12
exercise
11
muscle elderly
8
endurance trained
8
trained elderly
8
untrained elderly
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!