A microfluidic strategy for the encapsulation and stimulus-responsive release of molecules with distinct polarities from the interior of microgels is reported. The approach relies on (i) the generation of a primary O/W emulsion by the ultrasonication method, (ii) MF emulsification of the primary emulsion, and (iii) photopolymerization of the monomer present in the aqueous phase of the droplets, thereby transforming them into microgels. Non-polar molecules are dissolved in oil droplets embedded in the microgels. Polar molecules are physically associated with the hydrogel network. Upon heating, the microgels contract and release polar and non-polar cargo molecules. The approach paves the way for stimuli-responsive vehicles for multiple drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201100045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!