Extracellular polymeric substances (EPS) produced by a toxic dinoflagellate Amphidinium carterae Hulburt 1957 was isolated and characterized. Molecular masses of the EPS were about 233 and 1,354 kDa. Spectral analyses by (1)H nuclear magnetic resonance and Fourier Transformed-Infrared Spectroscopy revealed the characteristic of the functional groups viz. primary amine, carboxyl, halide, and sulfate groups present in the EPS. However, five elements (C, O, Na, S, and Ca) were detected by scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDX) analysis. X-ray diffraction and differential scanning calorimetric analysis confirmed the amorphous nature of EPS, which was comprised of an average particle size of 13.969 μm (d 0.5) with 181 nm average roughness. Two monosaccharide constituents, galactose (73.13%) and glucose (26.87%) were detected by gas chromatography-mass spectroscopy analysis. Thermal gravimetric analysis revealed that degradation of EPS obtained from A. carterae takes place in three steps. The EPS produced by A. carterae was found to be beneficial for the growth of both A. carterae and Bacillus pumilus. The potential heterogeneous properties of EPS may play an important role in harmful algal bloom.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-011-9852-5DOI Listing

Publication Analysis

Top Keywords

toxic dinoflagellate
8
dinoflagellate amphidinium
8
amphidinium carterae
8
carterae hulburt
8
hulburt 1957
8
role harmful
8
harmful algal
8
eps produced
8
eps
7
carterae
5

Similar Publications

Application of algicides produced by naturally occurring bacteria is considered an environmentally friendly approach to control harmful algal blooms. However, few studies assess the effects of bacterial algicides on non-target species, either independently or with other stressors. Here, we measured sub-lethal effects of dinoflagellate-specific algicide IRI-160AA on the estuarine fish Fundulus heteroclitus and Menidia menidia in laboratory experiments.

View Article and Find Full Text PDF

Microplastics (MP) are suitable substrates for the colonization of harmful microalgal cells and the adsorption of their lipophilic compounds including phycotoxins. Moreover, such interactions likely change as physical-chemical characteristics of the MP surface are gradually modified during plastic degradation in aquatic environments. Using a combination of innovative laboratory experiments, this study systematically investigated, for the first time, the influence of various MP characteristics (polymeric composition, shape, size, and/or surface roughness) on its capacity to carry both living harmful algal cells and dissolved phycotoxins.

View Article and Find Full Text PDF

The DnaJ-Hsp70-Hsp90 co-chaperon networks in scallops under toxic Alexandrium dinoflagellates exposure.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China. Electronic address:

Heat shock proteins (Hsps) are highly conserved molecular chaperones with essential roles against biotic and abiotic stressors. A large set of co-chaperons comprising J-domain proteins (DnaJs) regulate the ATPase cycle of Hsp70s with Hsp90s, together constituting a dynamic and functionally versatile network for protein folding/unfolding and regulation. Marine bivalves could accumulate and tolerate paralytic shellfish toxins (PSTs), the well-noted neurotoxins generated during harmful algal blooms.

View Article and Find Full Text PDF

As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).

View Article and Find Full Text PDF

Objective: The dinoflagellate Alexandrium monilatum forms blooms during summer in tributaries of the lower Chesapeake Bay. Questions persist about the potential for A. monilatum to negatively affect aquatic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!